Страница: 3/5
Получаемая последовательность будет выражена формулой:
S(x)=a(x)/f(x), где a(x) - исходные данные, f(x) - соответствующие коэффициенты многочлена.
Естественно, что желательно получить как можно более длинный период последовательности от многочлена заданной степени, а максимально возможная ее длина - 2N-1 в GF(2N). Последовательности максимальной длины формируются по правилу: Если многочлен f(x) степени n делит многочлен xK-1 лишь при K>2N-1, то период его любой ненулевой последовательности равен 2N-1. Существуют таблицы коэффициентов м-последовательностей.
Свойства м-последовательностей:
1.В каждом периоде последовательности число 1 и 0 отличается не более, чем на единицу.
2.Среди групп из последовательных 1 и 0 в каждом периоде половина имеет длительность в один символ, четвертая часть имеет длительность в два символа, восьмая часть имеет длительность в четыре символа и т.д.
3.Корреляционная функция последовательности имеет единственный значительный пик амплитуды 1 и при всех сдвигах равна 1/m (m- длина последовательности).
Корреляция между векторами вычисляется по формуле:
Где А - число позиций, в которых символы последовательностей x и y совпадают, а В - число позиций, в которых символы последовательностей x и y различны.
Генератор псевдослучайных чисел
В данном случае можно воспользоваться относительно простым методом генерации псевдослучайной последовательности: а именно - анализом тепловых шумов стабилитрона, работающего в режиме пробоя. Шумы усиливаются и подаются на триггер Шмидта, а затем передавая полученные биты в регистр сдвига. Поскольку тепловые шумы имеют достаточно случайный характер, то и последовательность будет случайной.
Формирование кода
Для формирования кода используется 5-разрядный первичный ключ, получаемый из генератора псевдослучайных чисел. Таким образом, на начальном этапе формирования ключа мы имеем количество комбинаций 25-2=30 (-2 поскольку комбинация 00000 является недопустимой). Потом первичный ключ подается на два генератора (два для увеличения количества кодов - см. ниже), вырабатывающие по этому ключу 31-разрядные м-последовательности. Эти последовательности перемножаются по модулю 2, циклически сдвигаясь, и образуя два вложенных цикла, выдают 312 вариантов ключа. Итого, общее число допустимых комбинаций составляет 30*312 .
Эти 312 вариантов хранятся в ОЗУ базового аппарата. Выбор одного ключа осуществляется путем повторного обращения к генератору псевдослучайных чисел. Итого, получаем неплохую для данных условий криптографической защиты цифру 30*313=~900000 комбинаций, не говоря о том, что надо еще догадаться, какой метод применяется для кодирования. При этом статистические свойства данной последовательности практически не отличаются от м-последовательности.
На представленной схеме приемника отражены основные, принципиальные моменты приема сигнала.
Итак, фазоманипулированный сигнал (см. диаграмму внизу) приходит с высокочастотной части приемника (здесь не изображена) и попадает на полосовой фильтр, пропускающий конкретный диапазон частот. Таким образом устраняются помехи , имеющие частоту вне пропускаемого диапазона.
Затем сигнал идет на блоки умножения, на которые также подается с опорного кварцевого термостатированного генератора . Сигналов два, они сдвинуты по фазе относительно друг друга на 180 градусов. Это необходимо для последующего сравнения. Итак, цепь разветвилась. После умножения получается сигнал, изображенный на диаграмме. (моделирование в Matlab 4.2c)
После сигнал подается на фильтр нижних частот, сглаживающих сигнал (см. диаграмму 2 и 3 ниже). Если фаза сигнала опорного генератора совпадает с пришедшим сигналом, мы имеем нечто похожее на
Затем сигнал подается на АЦП, причем частота дискретизации выбрана таким образом, что на каждый элемент приходится два отсчета (см. диаграмму 4 ниже). Это необходимо для надежного декодирования сигнала.
Реферат опубликован: 25/06/2007