Кодирование речевой информации

Страница: 4/5

Декодирование выполняется путем умножения (программного) оцифрованных отсчетов на ключ. Сигнал свертывается, и из 31-разрядного кода получается один бит полезной информации, которая затем по уровню анализируется и делается вывод о пришедшей информации: это 1 или 0.

Вторая ветвь схемы служит для фазовой автоподстройки во время разговора. Сигнал умножается (программно) на ключ и инверсное значение ключа, затем сглаживается в интеграторе. Далее формируется сигнал ошибки, который, будучи поданным на опорный генератор, подстраивает его фазу по максимальному абсолютному значению напряжения ошибки.

1.

2.

3.

4.

Вх. сигнал

После умножения и филь-трации

После оцифровки

Схема передачи сигнала

Схема передатчика несравненно более проста по сравнению со схемой приемника. Это объясняется определенностью, что передавать, тогда как сигнал на входе приемника невозможно предугадать.

Оценка быстродействия

Если исходить из предположения, что частота, с которой оцифровывать речь, равна 8 кГц, а АЦП двенадцатиразрядный, то получим следующие данные:

Частота прихода сигнала на кодер (декодер)

fкод/декод=fд*Nразр АЦП=8*103*12=96 кГц

Тформ ПСП=1/fкод/декод=10,4 мкс

При использовании микропроцессора i80386 с тактовой частотой 33 Мгц:

Ттакт МП=1/fМП=30,3 нс

Допустимое количество тактов для выполнения программы кодирования или декодирования (необходимо учесть, что при приеме кроме декодирования выполняется умножение на ключ и его инверсию для системы ФАПЧ):

Nтакт доп=Тформ ПСП /Tтакт МП=10,4*10-6/30,3*10-9=

=343 такта

Этого более чем достаточно для обработки информации, следовательно, система имеет резерв для дальнейших расширений и улучшений.

Заключение

Представленная система кодирования речи для бытовых радиотелефонов не претендует на какую-то особую оригинальность. Здесь использовались идеи, которые появились еще в 50-е годы с работами К. Шеннона, развившего идею А.В.Котельникова о том, что потенциальная помехоустойчивость системы связи при действии гауссовых помех инвариантна по отношению к ширине полосы частот. Долгое время (до 80-х годов) эти идеи не находили применения из-за несовершенства технической базы, прежде всего регистров и микропроцессоров. Сейчас многие новые разработки в области связи используют эти идеи из-за их очевидных преимуществ: простоты реализации, низкой стоимости и хорошей устойчивости таких кодов к помехам. Можно привести пример одной из первых систем, использовавшей шумоподобные сигналы - это система “RAKE”. После нее началось широкое применение шумоподобных сигналов в наземной и космической связи.

Применение помехоустойчивого и в то же время защищенного (в достаточной степени) от несанкционированного прослушивания кодирования, на взгляд автора этих строк, очень хороший вариант для бытовых применений.

Список литературы

1

Пугачев В.С.

Теория вероятности и математическая статистика

М. Наука 1979г.

2

Возенкрафт Дж.

Джекобс И.

Теоретические основы техники связи

М. Мир

1969г.

3

под редакцией Калмыкова В.В.

Радиотехнические системы передачи информации

М. Радио и Связь 1990

4

Варакин Л.Е.

Теория сложных сигналов

М. Советское радио 1970

6

Петрович Н.Т.

Размахнин М.К.

Системы связи с шумоподобными сигналами

М. Советское радио 1969

7

Петрович Н.Т.

Размахнин М.К.

Широкополосные каналы связи с шумоподобными сигналами

М. ВЗЭИС 1965

8

Жельников В.

Криптография от папируса до компьютера

М., ABF, 1996

9

составитель Чекатков А.А.

Использование Turbo Assembler при разработке программ

Киев, Диалек-тика, 1995

Громаков Ю.А.

Стандарты и системы подвижной радиосвязи

М. 1996г.

Реферат опубликован: 25/06/2007