Моделирование распределения потенциала в МДП-структуре

Страница: 2/6

xi-½ < x < xi+ ½ Ey(xi, yj + ½) = Ei,j+ ½ = const

xi-½ < x < xi+ ½ Ey(xi, yj -½ ) = Ei,j - ½ = const

xi- ½ < x < xi+ ½

yj- ½ < y < yj+ ½ - Q(x,y) = Qij = const

Тогда

(Ex)i+ ½ ,j - (Ex)i -½ ,j r*j + (Ey)ij+ ½ - (Ey)ij- ½ h*i = Qijh*i r*j

где h*i = hi - hi+1 , r*j = rj - rj+1

2 2

Теперь Еi+ ½ ,j выражаем через значение j(x,y) в узлах сетки:

xi+1

òEx(x,yj)dx = - ji+1,j - jij

xi

из (**) при y=yj:

(Ex)i+ ½ ,j = - ji+1j - jij

hi+1

Анологично :

(Ey)i,j+ ½= - jij+1 - jij

rj+1

Отсюда:

(Dj)ij = 1 j i+1,j - j ij - j i j - j i-1,j + 1 j i j+1 - j ij - j ij - j ij-1 =

h*i hi+1 hi r*j rj+1 rj

= Ndij + Naij

Граничные условия раздела сред

SiO2

e1

Для области V0j

yj+ ½ x ½

ene0 ò(Ex(x ½ ,y) - E+x(0,y))dy + ene0 ò (Ey(x,yj+ ½) - Ey(x,j- ½ ))dx =

yj- ½ 0

x ½ yj+½

= q ò ò (Nd + Na)dxdy

0 yj-½

Для области V`0j

yj+ ½ x ½

ene0 ò(E-x(0,y) - Ex(x -½,y))dy + ene0 ò (Ey(x,yj+½) - Ey(x,j-½))dx = 0

yj- ½ 0

где E+x(0,y) и E-x(0,y) -предельные значения х компоненты вектора

Е со стороны кремния и окисла.Складывая равенства и учитывая

условия:

ene0 dj + - e1e0 dj - = -Qss

dx dx

имеем

yj+½ x½

ò (ene0Ex(x½,y) - e1e0Ex(x-½,y) - Qss(y))dy + ene0ò (Ey(x,yj+½) + Ey(x,yj-½))dx +

yj-½ 0

0 x½ yj+½

+ e1e0 ò (Ey(x,yj+½) - Ey(x,yj-½))dx = q ò ò (Nd + Na)dxdy

x-½ 0 yj-½

Сделав относительно Ex и Ey предположения анологичные (**) положив Qss(y) = Qss = const при yj-½ < y < yj+½ и учитывая условия :

j+ = j- dj + = dj -

dy dy

“+”- со стороны кремния

“-“ - со стороны окисла

Получим :

Реферат опубликован: 27/05/2008