Страница: 10/12
.
Тогда формула теоретического корреляционного отношения примет вид:
,
или .
Подкоренное выражение корреляционного выражения представляет собой коэффициент детерминации (мера определенности, причинности).
Коэффициент детерминации показывает долю вариации результативного признака под влиянием вариации признака-фактора.
Теоретическое корреляционное выражение применяется для измерения тесноты связи при линейной и криволинейной зависимостях между результативным и факторным признаком.
Как видно из вышеприведенных формул корреляционное отношение может находиться от 0 до 1. Чем ближе корреляционное отношение к 1, тем связь между признаками теснее.
Теоретическое корреляционное отношение применительно к моему анализу я рассчитаю двумя способами:
Полученное значение теоретического корреляционного отношения свидетельствует о возможном наличии среднестатистической связи между рассматриваемыми признаками. Коэффициент детерминации равен 0,62. Отсюда я заключаю, что 62% общей вариации работающих активов изучаемых банков обусловлено вариацией фактора – капитала банков (а 38% общей вариации нельзя объяснить изменением размера капитала).
Кроме того, при линейной форме уравнения применяется другой показатель тесноты связи – линейный коэффициент корреляции:
,
где n – число наблюдений.
Для практических вычислений при малом числе наблюдений (n≤20÷30) линейный коэффициент корреляции удобнее исчислять по следующей формуле:
.
Значение линейного коэффициента корреляции важно для исследования социально-экономических явлений и процессов, распределение которых близко к нормальному. Он принимает значения в интервале: -1≤ r ≤ 1.
Отрицательные значения указывают на обратную связь, положительные – на прямую. При r = 0 линейная связь отсутствует. Чем ближе коэффициент корреляции по абсолютной величине к единице, тем теснее связь между признаками. И, наконец, при r = ±1 – связь функциональная.
Используя данные таблицы 1 я рассчитала линейный коэффициент корреляции r. Но чтобы использовать формулу для линейного коэффициента корреляции рассчитаем дисперсию результативного признака σy:
Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ≤ r2 ≤ 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.
Факт совпадений и несовпадений значений теоретического корреляционного отношения η и линейного коэффициента корреляции r используется для оценки формы связи.
Выше отмечалось, что посредством теоретического корреляционного отношения измеряется теснота связи любой формы, а с помощью линейного коэффициента корреляции – только прямолинейной. Следовательно, значения η и r совпадают только при наличии прямолинейной связи. Несовпадение этих величин свидетельствует, что связь между изучаемыми признаками не прямолинейная, а криволинейная. Установлено, что если разность квадратов η и r не превышает 0,1 , то гипотезу о прямолинейной форме связи можно считать подтвержденной. В моем случае наблюдается примерное совпадение линейного коэффициента детерминации и теоретического корреляционного отношения, что дает мне основание считать связь между капиталом банков и их работающими активами прямолинейной.
Реферат опубликован: 10/04/2010