Корреляционно-регрессионный анализ

Страница: 9/12

Вычисленные по вышеприведенным формулам значения сравнивают с критическими t , которые определяют по таблице Стьюдента с учетом принятого уровня значимости α и числом степеней свободы вариации . В социально-экономических исследованиях уровень значимости α обычно принимают равным 0,05. Параметр признаётся значимым (существенным) при условии, если tрасч> tтабл . В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Теперь я рассчитаю t-критерий Стьюдента для моей модели регрессии.

- это средние квадратические отклонения.

Расчетные значения t-критерия Стьюдента:

По таблице распределения Стьюдента я нахожу критическое значение t-критерия для ν= 32-2 = 30 . Вероятность α я принимаю 0,05. tтабл равно 2,042. Так как, оба значения ta0 и ta1 больше tтабл , то оба параметра а0 и а1 признаются значимыми и отклоняется гипотеза о том, что каждый из этих параметров в действительности равен 0 , и лишь в силу случайных обстоятельств оказался равным проверяемой величине.

Проверка адекватности регрессионной модели может быть дополнена корреляционным анализом. Для этого необходимо определить тесноту корреляционной связи между переменными х и у. Теснота корреляционной связи, как и любой другой, может быть измерена эмпирическим корреляционным отношением ηэ , когда δ2 (межгрупповая дисперсия) характеризует отклонения групповых средних результативного признака от общей средней:.

Говоря о корреляционном отношении как о показателе измерения тесноты зависимости, следует отличать от эмпирического корреляционного отношения – теоретическое.

Теоретическое корреляционное отношение η представляет собой относительную величину, получающуюся в результате сравнения среднего квадратического отклонения выравненных значений результативного признака δ, то есть рассчитанных по уравнению регрессии, со средним квадратическим отношением эмпирических (фактических) значений результативности признака σ:

,

где ; .

Тогда .

Изменение значения η объясняется влиянием факторного признака.

В основе расчёта корреляционного отношения лежит правило сложения дисперсий, то есть , где - отражает вариацию у за счёт всех остальных факторов, кроме х , то есть являются остаточной дисперсией:

Реферат опубликован: 10/04/2010