Страница: 8/12
ŷ = a0 + a1x,
где ŷ - теоретические расчётные значения результативного признака (работающие активы), полученные по уравнению регрессии;
a0 , a1 - коэффициенты (параметры) уравнения регрессии;
х – капитал исследуемых банков.
Пользуясь вышеуказанными формулами для вычисления параметров линейного уравнения регрессии и расчётными значениями из таблицы 1, получаем:
Следовательно, регрессионная модель зависимости работающих активов от капитала банков может быть записана в виде конкретного простого уравнения регрессии:
.
Это уравнение характеризует зависимость работающих активов от капитала банка. Расчётные значения ŷ , найденные по этому уравнению, приведены в таблице 1. Правильность расчёта параметров уравнения регрессии может быть проверена сравниванием сумм ∑у = ∑ŷ . В моем случае эти суммы равны.
Но для того, чтобы применить мою формулу, надо рассчитать, насколько она приближенна к реальности, то есть проверить ее адекватность.
Проверка адекватности регрессионной модели.
Для практического использования моделей регрессии большое значение имеет их адекватность, т.е. соответствие фактическим статистическим данным.
Корреляционный и регрессионный анализ обычно (особенно в условиях так называемого малого и среднего бизнеса) проводится для ограниченной по объёму совокупности. Поэтому показатели регрессии и корреляции – параметры уравнения регрессии, коэффициенты корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.
При численности объектов анализа до 30 единиц возникает необходимость проверки значимости (существенности) каждого коэффициента регрессии. При этом выясняют насколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатами действия случайных причин.
Значимость коэффициентов простой линейной регрессии (применительно к совокупностям, у которых n<30) осуществляют с помощью t-критерия Стьюдента. При этом вычисляют расчетные (фактические) значения t-критерия
- среднее квадратическое отклонение результативного признака от выравненных значений ŷ ;
или
- среднее квадратическое отклонение факторного признака x от общей средней .
Реферат опубликован: 10/04/2010