Страница: 8/29
Законы отражения не зависит от длины волны, и естественно возникла мысль заменить линзовый объектив вогнутым сферическим зеркалом (рисунок 4). Такой телескоп называется рефлектором, т.е. отражательным телескопом. Первый рефлектор (диаметром всего лишь в 3 см и длиной в 15 см) был построен ньютоном в 1671 году.
Сферическое зеркало не собирает параллельного пучка лучей в точку; оно дает в фокусе несколько разлитое пятнышко. Это искажение называется сферической аберрацией. Если зеркалу придать форму параболоида вращения, то сферическая аберрация исчезает. Параллельный пучок, направленный на такой параболоид вдоль его оси, собирается в фокусе практически без искажений, если не считать неизбежного размытия из-за дифракции. Поэтому современные рефлекторы имеют зеркала параболоидальной или, как чаще говорят, параболической формы.
До конца XIX века основной целью телескопических наблюдений было изучение видимых положений небесных светил. Важную роль играли наблюдения комет и деталей на планетных дисках. Все эти наблюдения производились визуально, и рефракторы с двулинзовым объективом полностью удовлетворял потребности астрономов.
В конце XIX и особенно в XX веке характер астрономической науки претерпел органические изменения. Центр тяжести исследований переместился в область астрофизики и звездной астрономии. Основным предметом исследования стали физические характеристики Солнца, планет, звезд, звездных систем. Появились новые приемники излучения – фотографическая пластинка и фотоэлемент. Стала широко применяться спектроскопия. В результате изменились и требования к телескопам.
Для астрофизических исследований желательно, чтобы оптика телескопа не накладывала никаких ограничений на доступный диапазон длин волн: земная атмосфера и так ограничивает его слишком сильно. Между тем стекло, из которого делаются линзы, поглощает ультрафиолетовое и инфракрасное излучение. Фотографические иммульсии и фотоэлементы чувствительны в более широкой области спектра, чем глаз, и потому хроматическая аберрация при работе с этими приемниками сказывается сильнее.
Таким образом, для астрофизических исследований нужен рефлектор. К тому же большое зеркало рефлектора изготовить значительно легче, чем двухлинзовый ахромат: надо обработать с оптической точностью (до 1/8 длины световой волны или 0,07 микрона для визуальных лучей) одну поверхность вместо четырех, и при этом не предъявляется особых требований к однородности стекла. Все это привело к тому, что рефлектор стал основным инструментом астрофизики. В астрометрических работах по-прежнему применяются рефракторы. Причина этого состоит в том, что рефлекторы очень чувствительны к малым случайным поворотам зеркала: так как угол падения равен углу отражения, то поворот зеркала на некоторый угол b смещает изображение на угол 2b. Аналогичный поворот объектива в рефракторе дает гораздо меньшее смещение. А так как в астрометрии надо измерять положение светил с максимальной точностью, то выбор был сделан в пользу рефракторов.
Как уже сказано, рефлектор с параболическим зеркалом строит изображение очень четко, однако тут необходимо сделать одну оговорку. Изображение можно считать идеальным, пока оно остается вблизи оптической оси. При удалении от оси появляются искажения. Поэтому рефлектор с одним толь параболическим зеркалом не позволяет фотографировать больших участков неба размером, скажем, 50 x 50, а это необходимо для исследования звездных скоплений, галактик и галактических туманностей. Поэтому, для наблюдений, требующих большого поля зрения, стали строить комбинированные зеркально-линзовые телескопы, в которых аберрация зеркала исправляется тонкой линзой, часто увиолевой (сорт стекла, пропускающего ультрафиолетовые лучи).
Реферат опубликован: 5/11/2006