Вторжение космических тел в атмосферу Земли

Страница: 2/9

(4.3)

(4.4)

Здесь

m - масса метеороида,

v - скорость,

Q - угол наклона вектора скорости к поверхности Земли,

g - ускорение силы тяжести,

r - плотность атмосферы в точке,

A=pre2 -площадь поперечного сечения метеороида (площадь миделя),

z - высота, отсчитываемая от уровня моря,

t - время ,

CD - коэффициент сопротивления воздуха ,

R3 - радиус Земли.

Изменение плотности воздух с высотой будем находить по барометрической формуле:

гдеr -плотность на уровне моря. Коэффициент CD можно считать зависящим от числа Кнудсена, причём он убывает с высотой и меняется в пределах 2>CD>0.92 при изменении Kn от 10 до 0.1.

Систему (4.1)-(4.3) нужно решать в предположении, что начальный момент времени при t=0 заданы ze=z, Qe=Q, ve=v, me=m, то есть параметры входа метероида. За координату z, можно принять ту высоту, где согласно (4.1) сила тяготения Земли выравнивается с сопротивлением, то есть когда уравнение (4.5) при заданных m=me, v=ve, можно считать за определение. Пренебрежём также изменением угла, то есть примем Qe=Q (это не внесёт погрешностей, ибо есть малая величина для диапазона скоростей от 11 до < 70 км/с

(< 0.001 c-1).

После интегрирования уравнения (4.1) при условии пренебрежения силой mg sinQ и для z<ze получаем

(4.6)

где B - баллистический коэффициент.

Приближённую формулу (4.6) можно использовать для оценки поведения решения при больших v. Видно, что v»ve при z>>H. Это означает, что скорость тела практически не меняется.

Используя несложную компьютерную технику, систему (4.1)-(4.3) можно проинтегрировать с помощью любого подходящего численного метода, например метода Эйдлера с пересчётом. Сущность этого метода состоит в том, что для уравнения y’=f(x,y) сначала мы находим значение `y’1=f(x0,y0) Dx+y0 где x0, y0 -начальная точка, а Dx - шаг интегрирования, затем берём

и находим уточнённое значение y1=y’Dx+y0+O(Dx2)

Аналогичная процедура используется в случае системы уравнений.

Этот метод весьма прост для реализации даже с помощью программируемых микрокалькуляторов (вследствие простоты правых частей системы (4.1)-(4.3)).

Для расчёта движения метеорита в нижних слоях атмосферы система (4.1)-(4.4)не годится ,т.к. она не учитывает абляцию (изменение массы),поэтому перейдем к описанию более сложной модели ,пригодной для низких высот ,т.е. для второй зоны.

Систему уравнений так называемой физической теории метеоритов (Kn<0.1) запишем в предположении движения тела в плоскости, проходящей через ось z:

(4.8)

(4.7)

(4.9)

Реферат опубликован: 11/10/2009