Страница: 4/9
Так как влетающий в атмосферу метеороид холодный (температура его внутренних частей ниже температуры окружающей Среды), то можно считать, что энергия состоит только из кинетической. Углерод метеорита может гореть в атмосфере при сответствующих условиях. Но недостаток кислорода не позволит сгореть большому количеству углерода, и выделившаяся энергия не будет превышать кинетической энергии тела. Как же расходуется кинетическая энергия тела. Пусть тело затормозилось от скорости ve до скорости vc на пути. Это означает, что на этом пути энергия передалась окружающей среде за время tc. Время tc около 1-10 с, S порядка 80-40 км. Отсюда получаем, что с точки зрения воздействия на атмосферу метеориты подобны молнии: за малое время вдоль траектории выделяется энергия DE, на единицу длины приходится DE/S. Рассмотрим пример. Для метеорита типа Лост-Сити me=18 кг, mc=15 кг, ve=14 км/с, vc=3 км/с
DE»meve2/2
s=50 км, E0=DE/S=360 дж/см. метеороид подобен весьма длинной молнии с удельной энергией E0= meve2/2S. Для “сгорающих” метеороидов есть и внешнее сходство: они сверкают в небесной выси, как молнии. Очевидцы, наблюдавшие падение метеороидов, слышали и раскаты грома; баллистическая волна распространялась в атмосфере, подобно грозовой ударной волне.
Сформулированная выше упрощённая модель движения метеороида, объединённая с теорией линейных взрывов (грозовых разрядов), даёт возможность создать модель движения и взаимодействия метеороидов с атмосферой.
В заключении этого раздела коснёмся вопроса о характере и многообразии траекторий метеороидов. Не будем учитывать изменения массы, т.е. положим dm/dt=0, но CL¹0; отношение (CL/CD)=k называется аэродинамическим качеством движущегося тела.
Будем считать, что |k|£1, причём отрицательные значения k соответствуют наличию поперечной силы, действующей на тело “вниз” - в отрицательном направлении оси y местной системы координат, где ось x направлена вдоль вектора скорости, а ось y к ней перпендекулярна. Характерную величину m/CDA обозначим через b. За величину b примем значение 1515 кг/м2, что будет соответствовать входу в атмосферу сферического тела радиуса rE=97.8 м и плотностью rm=0.03 г/см. Обозначим через S расстояние вдоль поверхности Земли от проекции условной точки входа в атмосферу на эту поверхность. Пусть угол входа равен 20°, ZE=60км, vE=30 км/с. Меняя значения k, мы получим разные траектории и скорости тела при значениях аэродинамического качества k=0.5;-0.125;0;0.125;0.5 (S -расстояние от поверхности Земли) (рис. 2). При k=0.5 наблюдается явление рикошета .
При значениях k<0 траектории могут иметь вертикальную касательную, а при k<-1 пролётную g-образную траекторию.
Из рис. 2 видно, что скорость тела остаётся практически постоянной до высоты 40 км.
Кроме описанных выше параметров вычисляется интенсивность свечения I по формуле
(4.11) |
где t0 - коэффициент эффективности свечения (опытный параметр).
Опишем вкратце более общую модель входа метеороида в атмосферу. Уравнения (4.7)-(4.10) описывают движение центра масс метеороида. Кроме этого следовало бы описать движение метеороида около центра масс. Довольно трудной задачей является определение параметров тела и окружающего воздуха, включая след за телом. Для этой задачи следует на определённых этапах (для дискретного набора времени t=tj) проводить расчёт обтекания и абляции, а так же механической деструкции тел, с учётом эффекта теплопередачи и излучения, а так же высвечивание метеороидов в различных спектральных диапазонах). Нужно рассчитывать распространение атмосферных возмущений в пространстве и времени. Следует изучить вопросы, связанные с моделированием воздействия удара метеороидов и балистических волн о поверхность Земли.
Реферат опубликован: 11/10/2009