Доходы населения

Страница: 17/22

Очевидно, что при равном распределении доходов, какими бы благими намерениями оно не оправдывалось, в обществе не будут производиться так называемые предметы «роскоши», так как их некому будет купить. Сошлемся на высказывание экономиста И. Бентама: «При подведении всех частных богатств под один уровень общество должно лишиться всех тех предметов потребления, которые иначе иначе не могут существовать, как образуя ценность, превышающую установленный уровень». С другой стороны, столь же очевидно, что в обществе с неравным распределением доходов выпускаемая продукция и оказываемые услуги будут значительно разнообразнее, а структура потребления разных доходных групп будет существенно различаться. И то, что для одних будет предметом первой необходимости, для других может оказаться предметом роскоши.

Анализ показателей дифференциации доходов. Кривая Лоренца.

Показатель среднего дохода очень чувствителен к увеличению или уменьшению доли высокодоходных или низкодоходных групп населения. В статистике большинства развитых стран для характеристики общего уровня доходов приводится не средний, а медианный уровень, то есть уровень, выше и ниже которого получает доход одинаковое число работников. Еще одной характеристикой, применяемой при исследовании доходов, является мода, представляющая собой наиболее распространенный уровень дохода.

Однако все эти характеристики по-прежнему не позволяют ответить на вопрос о том, во сколько раз доходы одних групп населения превышают доходы других. В этом отношении анализ доходов целесообразно дополнить характеристиками, изменяющими разрыв между высокодоходными и низкодоходными группами населения. Такими характеристиками могут являться децильные, квартильные, квинтильные и другие коэффициенты, которые подразумевают разбиение исходной совокупности на равные части и измеряют соотношение между доходами двух крайних групп.

Еще один интересный прием анализа доходов населения с точки зрения их дифференциации состоит в расчете так называемых накопленных, или кумулятивных, частот (долей) и построении кумулятивных кривых, или кривых Лоренца. Рассмотрим на простом примере, как строится кривая Лоренца.

Четыре индивидуума (назовем их A,B,C и D) получают суммарный доход в 10000 рублей в месяц, который распределяется между ними в соответствии с данными таблицы 3. Ясно, что такое распределение дохода не является равномерным. Подсчитав удельный вес дохода каждого индивидуума в общем доходе, мы можем сказать следующее: наименьшую долю дохода (10%) получает А; А и В получают 10+15=25% дохода, или, иными словами, одна половина людей получает четвертую часть, а другая – три четверти общего дохода. А, В и С получают 10+15+30=55% дохода, то есть на долю D приходится 45% общего дохода. Полученные последовательным суммированием долей новые удельные веса и называются накопленными, или кумулятивными, частотами.

Распределение дохода между четырьмя индивидуумами Таблица 3

Получаемый доход, руб.

Удельный вес дохода индивидуума в общем доходе, %

Кумулятивный ряд доходов (накопленные частоты), %

Удельный вес каждого индивидуума в их общем числе, %

Кумулятивный ряд численности,%

А

B

C

D

1000

1500

3000

4500

10

15

30

45

10

25

55

100

25

25

25

25

25

50

75

100

Итого

10000

100

100

Графически изобразить и измерить неравенство доходов можно с помощью кривой Лоренца. Для ее построения отложим по оси абсцисс последовательно просуммированные удельные веса индивидуумов в их общем числе, учитывая, что удельный вес каждого из них составляет ¼, или 25%, а по оси ординат – кумулятивные доли доходов этих людей. Соединив все точки, получим кривую Лоренца (рис.2).

Чтобы понять, каким образом эта кривая отражает неравенство доходов, попытаемся ответить на вопрос: какой бы вид имела кривая Лоренца в случае полного равенства доходов? Очевидно, что в такой ситуации каждый получал бы 2500 руб. дохода, т.е. ордината точки А переместилась бы в точку Е, точки В – в точку F и т.д., следовательно, мы получили бы прямую OD, составляющую с осями координат угол в 450. Таким образом, неравенство доходов характеризуется степенью отклонения кривой Лоренца от биссектрисы 1-го координатного угла. Это отклонение можно измерить через отношение площади фигуры S между кривой Лоренца и прямой OD к площади всего треугольника OKD. В результате получим показатель, который в литературе называется коэффициентом концентрации (или коэффициентом Джинни) G.

Реферат опубликован: 21/02/2009