Страница: 14/16
14. Внутр. эн-я системы. З-н сохр-я энергии. Мы рассмотрели взаимопревращение кин. и пот. энергий в поле консервативных сил. Что происходит, if действуют неконсервативные силы. Мы знаем, что, if телу сообщит скорость (сообщить кинетическую энергию)и пустить двигаться, например, по пов-ти земли, оно остановиться за счет сил трения. Его потенциальная эн-я не изменится, а кинетическая станет =ой нулю, когда оно остановиться. Для ответа на вопр, во что перешла кинетическая эн-я, необходимо ввести еще 1 вид энергии- внутреннюю энергию. Определим внутреннюю энергию Евн как сумму кинетических и потенциальных энергий частиц (атомов), составляющих тело: Евн=S((Е^i)пот+(Е^i)кин) (11.13) Здесь N -число частиц, i -номер частицы. Параметром, характеризующим внутреннюю энергию явл. температура тела Т0К, выраженная в градусах Кельвина. Чем больше температура тела, тем с большей скор-тью двигаются атомы и тем самым больше внутренняя эн-я. Численно внутренняя эн-я =а: Евн=(М/'мю')C Т^0 (11.14) М - маса тела, ??????молярная маса (численно равная атомному или молекулярному весу составляющих атомов),С -теплоемкость, равная энергии, кот. нужно передать 1му килограмму-молю, чтобы нагреть его на 1 градус Цельсия или Кельвина. Изменение внут. энергии при переходе системы из состояния 1 в сост. 2 пропорционально изменению температуры тела: Евн(2)-Евн(1) = 'дельта'U = (M/m)C 'дельта T^0. Сумму кин., пот. и внут. энергий системы принято называть полной энергией Е. В рассмотренном нами примере с останавливающемся телом кинетическая эн-я тела переходит во внутреннюю энергию, т.е. идет на нагревание системы. С учетом вышесказанного мы можем сформулировать з-н сохранения полной энергии системы: Полная эн-я изолированной системы остается пост Мы теперь не конкретизируем, какие силы (консервативные или неконсервативные) действуют в этой сист-е. Работа в сист-е, совершаемая за счет пот. энергии, может переходить и в кинетическую энергию системы, и во внутреннюю энергию. При увеличении внут. энергии сист. нагревается.
12.1 Постулаты Т. отнсит-ти. К концу прошлого в. Д.К.Максвеллом (1831-1879) были сформулированы осн. законы электричества и магнетизма в виде системы дифференциальных уравнений, кот. описывали постоянные и переменные электрические и магнитные поля. Решения системы уравнений Максвелла описывали всю гамму поведений электромагнитных полей в прост-ве и времени. Из системы уравнений Максвелла следовало, что переменные электрические и магнитные поля могут существовать только в форме единого электромагнитного поля, кот. распространяются в прост-ве после возникновения с пост. скор-тью, =ой скор. света в вакууме - с. На вопр о том, в какой среде распространяется это поле, Т. Максвелла ответа не давала. Ключевым моментом Т. Максвелла являлось то, что уравнения Максвелла были неинвариантны относит. преобр. Галилея. Это означало, что при переходе с помощью преобр. Галилея из 1ой инерц. системы отсч. в друг., уравнения меняли свой вид. Это обозначало, что преобр. Галилея нельзя было применять при описании электрич. и магнитных явлений. Строгое математическое доказательство неинвариантности уравнений Максвелла относит. преобр. Галилея достаточно сложно. Поэтому, проиллюстрируем этот факт на простом и наглядном примере. Для этого потребуется вспомнить, какие силы действуют на движущиеся заряды в электрич. и магнитных полях. Пусть 2 одноименных заряда летят с одинаковой скор-тью в направлении оси (ox), как это показано на рис.12.1. В неподвижной сист-е отсч. заряды будут создавать электрические и магнитные поля, и, след., будут находиться в полях друг друга. Электрическое поле воздействует на заряд силой Кулона, магнитное - силой Лоренца. Напомним формулы для вычисления этих сил для случая, приведенного на рисунке. Fк=1/4Пи'эпсилонт нулевое'*q1q2/l^2; Fa=q2*v*B1, где B1=4*Пи*q1*v/'мю нулевое'*l^2. Здесь B1 - магнитная индукция, создаваемая первым зарядом в точке, где находится 2й. Сила Кулона для одноименных зарядов всегда явл. силой отталкивания, а сила Лоренца в данном случае явл. силой притяжения. Тким обрзом, в неподвижной сист-е отсч. величина силы взаимдейст. =а: F = FK - FЛ. If перейти к сист-е отсч., движущейся вдоль оси (ох) со скор-тью ( вместе с зарядами, то в ней заряды окажутся неподвижными, и сила Лоренца не возникнет. Тким обрзом, силы взаимдейст. зарядов в различн. инерц. сист. отсч. окажутся разными. След. и поведение частиц ,их движение во времени, будет разным в зависим. от того, в какой инерц. сист-е коорд. мы рассматриваем это движение. Есcно, что это абсурд и отсюда сделаем вывод, что к движущимся зарядам, законы движения и взаимдейст. кот. описываются уравнениями Максвелла, нельзя применять принцип отнсит-ти Галилея, т.е. преобр. Галилея. Вторым этапом в становлении специальной Т. отнсит-ти стал опыт А.А.Майкельсона (1852-1931), проведенный в 1881 году. В опыте определялась скорость света в различн. движущихся сист. отсч Уже говорилось, что по Т. Максвелла электромагнитные волны должны распространяться со скор-тью в вакууме - с. Встал вопр, в какой инерц. сист-е отсч. это происходит. If таковой считать систему отсч., связанную с неподвижными звездами, то скорость нашей планеты относит. них ( = 30 км/с. Эта скорость большая и сравнимая со скор-тью света с. Майкельсон экспериментально определял скорость света в разных сист. отсч., а имено, он измерял скорость света, идущего в 2х противоположных относит. Земли напр-ях. В соответствии с преобразованиями Галилея и положениями класич. механики, скор. света в этих сист. отсч. должны были бы отличатся на величину 2v. Результаты эксперимента Майкельсона однозначно показали, что скорость света не зависит от выбора системы отсч. и всегда =а с. Т.е. было установлено, что электромагнитные волны во всех инерц. сист. отсч. распространяются с одинаковой скор-тью с(3(108 м/с. Эксперименты, подобные опыту Майкельсона повторялись неоднократно со все возрастающей точностью. На сегодняшний день можно утверждать, что скорость в различн. сист. отсч. одинакова с точностью порядка нескольких мм/с.
Реферат опубликован: 31/08/2007