Страница: 4/16
7. Осн. положения механики Галилея. Все Т., созданные до становления современ. физики, базировались на принципе, "Природа не терпит разрывов". Изменение состояния системы происходит не мгновенно, а плавно. взаимдействие тел происходит мгновенно. З-ны физики всегда базируются на опытах, экспериментах. Имено в рамках такого подхода Галилей создал основы класич. механики. Напомним, что в основе механики Аристотеля, доминировавшей в тот период, лежало утв., что скорость тела ~ приложенной силе: v~F. Галилей доказал неверность. Осуществил эксперимент в ходе кот. он определял время, необходимое для падения тел с вершины Пизанской башни. Возьмем несколько шаров одинакового размера, изготовленных из разного в-ва. Они имеют разный вес. Вес тела хар-зует силу тяготения, действующую на тело со стороны Земли. Сила тяготения, действующая на тело =а его весу. If справедливо утв. Аристотеля, то разные тела с разным весом должны обладать разными скоростями падения и, соответственно, достигать пов-ти земли при бросании с башни за разные промежутки времени. Однако, эксперименты, проведенные с разными телами показали, что они достигали пов-ти земли за практически одинаковые промежутки времени.Вывод однозначен. Скорость тела не опр-ся приложенной силой. Приложенной силой опр-ся какой-то другой динамический параметр. Галилею потребовалось много лет и много усилий, чтобы выяснить, что же это за параметр. В этой облти наиболее известны его эксперименты с движением шаров по наклонной плоскости. Шары скатывались по наклонной плоскости, длина кот. и высота были заданы. В ходе опыта Галилей определял путь S, проходимый телом в зависим. от времени t. Им был установлен з-н, являющийся частным случаем 2го з-на Ньютона. Путь, проходимый телом квадратично зависит от времени: S=v0t + (at^2)/2, где константа a(ускорение) прямо ~ высоте h и обратно ~ длине пути S. Начальная скорость тела - (0 в его опытах могла меняться. В опытах Галилея ускорение определялось ускорением свобод. падения: a~gh/s. Анализируя проводимые эксперименты, Галилей пришел к выводу о существовании з-на инерции. Действительно, if устремить длину основание наклонной плоскости к бесконечности, ускорение будет стремиться к нулю, знчит, за =ые промежутки времени тело будет проходить =ые отрезки пути и скорость тела будет пост Тело будет само по себе двигаться по инерции. Кроме экспериментов Галилей юзал умозрительные заключения. Он рассмотрел поведение тел и живых существ внутри корабля. Их поведение не зависит от того, стоит корабль у причала или двигается по спокойной воде с пост. скор-тью. Вывод: if корабль будет двигаться с пост. скор-тью, то находясь внутри корабля невозможно определить, движется он или стоит.
8.Принцип отнсит-ти Галилея. Преобразования Галилея. Галилей ввел понятие инерц. системы отсч., в кот. тело сохраняет сост. покоя или =мерного прямолинейного движения, if на него не действуют друг. тела (силы).Принцип отнсит-ти Галилея: все физические законы не меняются (инвариантны) в разных инерц. сист. отсч Или все законы механики инвариантны при применении к ним преобр. Галилея. Для перехода из 1ой инерц. системы отсч. в друг. Галилей ввел преобр Пусть имеется инерциальная сист. отсч., полож. тел в кот. задается декартовыми координатами. Например, точка А на рис. 10.3. Кроме системы коорд. XYZ (обозначают К), может быть и другая инерциальная сист. коорд., например, X'Y'Z' (назовем ее К'). Инерциальная сист. коорд. К' движется с пост. скор-тью u относит. системы К. Пространство изотропное, в нем не сущ-вует выделенного направл-я, поэтому удобно выбрать направл. оси OX совпадающим с направлением скор. u. Т.е. сист. К' движется вдоль оси OX системы отсч. К. Полож-е тчки А в сист-е К задается вектором r(x,y,z) или его проекциями на оси OX, OY и OZ, кот. равны, соответственно, x, y и z. Полож-е той же тчки в сист-е К' задаются координатами x', y' и z'. Связь между x, y, z и x', y', z' дается преобразованиями Галилея: x'=x+ut; y'=y;z'=z; t'=t. Дополнительно к преобразованиям коорд. введено преобразование времени (конц-я дальнодействия). Инвариантность означает независимость, неизменность относит. каких-либо физических усл-ий. В математике под инвариантностью понимается неизменность величины относит. каких-либо преобр Рассмотрим, какие параметры не меняются при преобразованиях Галилея, т.е. явл. инвариантами этих преобр Первый-время. При переходе от 1ой инерц. системы отсч. к другой не меняется как само время t=t', так и длительность какого-либо события 'дельта't : 'дельта't'= t'2 -t'1 = t2 -t1 = 'дельта't (10.2) Помимо времени, неизменным остается расстояние между двумя точками. Обозначим расстояние между точками А и В через l в сист-е K и l' в сист-е K'. Координаты этих точек, соответственно, xA, yA, zA, xB, yB, zB в сист-е K и x'A, y'A, z'A, x'B, y'B, z'B в сист-е К'. Расстояние между точками опр-ся их координатам по теореме Пифагора: l' = 'корень'( (x'A-x'B)^2 + (y'A-y'B)^2 + (z'A-z'B)^2 ) = 'корень'( (xA + vt - xB -vt)^2 + (yA-yB)^2 + (zA-zB)^2 ) =l. (10.3) Продифференцируем по времени соотношения (10.1) и получим преобр. Галилея для скоростей: V'x=dx'/dt=dx/dt + u=Vx+u; V'y=dy'/dt=dy/dt=Vy; V'z=dz'/dt=dz/dt=Vz; (10.4) Продифференцируем по времени и получим з-н преобр. ускорений при переходе из 1ой инерц. системы отсч. в друг.: a'x=dV'x/dt=dVx/dt + du/dt=dVx/dt=ax; a'y=dV'y/dt=dVy/dt=ay; a'z=dV'z/dt=dVx/dt=ax; (10.5). Из этих выражений видно, что все 3 проекции ускорения на оси коорд. остаются неизмен. при переходе из системы отсч. К в К'. Тким обрзом, ускорение тоже явл. инвариантом преобр. Галилея. З-н сохранения масы был сформулирован уже после Галилея и Ньютона. Но, добавим, что в класич. механике маса тела не зависит от выбора системы отсч. и также явл. инвариантом преобр. Галилея.
Реферат опубликован: 31/08/2007