В.Б. Кирьянов "Задача равновесий"

Страница: 7/9

p1 : á p1 , q 1ñ º min á p1 , q 1ñ

p1 ½ p1 c ³ p2 .

4.Каноническая пара задач. Итак, мы описали все четыре линейные статические задачи равновесного производственного управления:

q 1

- пару задач затрат:

p2

a

q 2

:

p1

с прямой задачей оптимального планирования закупок сырья:

q 1 : min áp1 , q 1ñ при a q 1 ³ q 2 ,

и двойственной ей задачей оптимального планирования цен выпускаемых изделий:

p2 : max áp2 , q 2ñ при p2 a £ p1 ;

q 2

- и пару задач выпуска:

p1

с

q 1

:

p2

с прямой задачей оптимального планирования выпуска изделий:

q 2 : max á p2 , q 2ñ при c q 2 £ q 1 ,

и ей двойственной задачей оптимального оценивания сырья:

p1 : min á p1 , q 1ñ при p1 c ³ p2 .

Как мы видим, обе задачи обладают "перекрестной" симметрией и формально, то есть безотносительно к экономическому содержанию, прямая и обратная пары задач тождественны друг другу с точностью до - 1)- переобозначения своих величин и -2)- перестановки между собой их взаимно-двойственных частей:

min á p1 , q 1ñ при a q 1 ³ q 2 max á p2 , q 2ñ при c q 2 £ q 1,

max á p2 , q 2ñ при p2 a £ p1 min á p1 , q 1ñ при p1 c ³ p2 .

Точная взаимозаменяемость задач достигается:

- заменой технологических матриц:

c « a ,

- и переобозначением количественных и ценовых векторов:

(p1; 2 )t « q 1; 2 .

При этом прямая часть задачи затрат становится равносильной двойственной части задачи выпуска, а двойственная часть первой - прямой части второй.

Будем называть взаимно-двойственную пару задач прямого (затратного) вида с прямой (количественной) частью на минимум и двойственной (ценовой) частью на максимум:

q 1

q 1 : min á p1 , q 1ñ при a q 1 ³ q 2 ,

p2

a

q 2

:

p1

p2 : max á p2 , q 2ñ при p2 a £ p1 .

Реферат опубликован: 19/11/2009