Страница: 7/9
p1 : á p1 , q 1ñ º min á p1 , q 1ñ p1 ½ p1 c ³ p2 . |
4.Каноническая пара задач. Итак, мы описали все четыре линейные статические задачи равновесного производственного управления:
q 1 | ||||
- пару задач затрат: |
p2 |
a |
q 2 |
: |
p1 |
с прямой задачей оптимального планирования закупок сырья:
q 1 : min áp1 , q 1ñ при a q 1 ³ q 2 ,
и двойственной ей задачей оптимального планирования цен выпускаемых изделий:
p2 : max áp2 , q 2ñ при p2 a £ p1 ;
q 2 | ||||
- и пару задач выпуска: |
p1 |
с |
q 1 |
: |
p2 |
с прямой задачей оптимального планирования выпуска изделий:
q 2 : max á p2 , q 2ñ при c q 2 £ q 1 ,
и ей двойственной задачей оптимального оценивания сырья:
p1 : min á p1 , q 1ñ при p1 c ³ p2 .
Как мы видим, обе задачи обладают "перекрестной" симметрией и формально, то есть безотносительно к экономическому содержанию, прямая и обратная пары задач тождественны друг другу с точностью до - 1)- переобозначения своих величин и -2)- перестановки между собой их взаимно-двойственных частей:
min á p1 , q 1ñ при a q 1 ³ q 2 max á p2 , q 2ñ при c q 2 £ q 1,
max á p2 , q 2ñ при p2 a £ p1 min á p1 , q 1ñ при p1 c ³ p2 .
Точная взаимозаменяемость задач достигается:
- заменой технологических матриц:
c « a ,
- и переобозначением количественных и ценовых векторов:
(p1; 2 )t « q 1; 2 .
При этом прямая часть задачи затрат становится равносильной двойственной части задачи выпуска, а двойственная часть первой - прямой части второй.
Будем называть взаимно-двойственную пару задач прямого (затратного) вида с прямой (количественной) частью на минимум и двойственной (ценовой) частью на максимум:
q 1 |
q 1 : min á p1 , q 1ñ при a q 1 ³ q 2 , | |||
p2 |
a |
q 2 |
: | |
p1 |
p2 : max á p2 , q 2ñ при p2 a £ p1 . | |||
Реферат опубликован: 19/11/2009