Страница: 9/18
Для всех очевидно, что сегодняшняя ситуация далека от идеальной. Однако, по-видимому, ее было невозможно избежать, поскольку поставщики симметричных мультипроцессорных архитектур должны были как можно раньше предоставить своим покупателям возможности эффективного программирования, и времени на согласование решений просто не было (любых поставщиков прежде всего интересует объем продаж, а проблемы будущего оставляются на будущее).
Применяемые в настоящее время подходы зависят от того, насколько внимательно разработчики ОС относились к проблемам реального времени. (Возвращаясь к введению этого раздела, еще раз отметим, что здесь мы имеем в виду "мягкое" реальное время, т. е. программно-аппаратные системы, которые обеспечивают быструю реакцию на внешние события, но время реакции не установлено абсолютно строго.) Типичная система реального времени состоит из общего монитора, который отслеживает общее состояние системы и реагирует на внешние и внутренние события, и совокупности обработчиков событий, которые, желательно параллельно, выполняют основные функции системы.
Понятно, что от возможностей реального распараллеливания функций обработчиков зависят общие временные показатели системы. Если, например, при проектировании системы замечено, что типичной картиной является "одновременное" поступление в систему N внешних событий, то желательно гарантировать наличие реальных N устройств обработки, на которых могут базироваться обработчики. На этих наблюдениях основан подход компании Sun Microsystems.
В системе Solaris (правильнее говорить SunOS 4.x, поскольку Solaris в терминологии Sun представляет собой не операционную систему, а расширенную операционную среду) принят следующий подход. При запуске любого процесса можно потребовать резервирования одного или нескольких процессоров мультипроцессорной системы. Это означает, что операционная система не предоставит никакому другому процессу возможности выполнения на зарезервированном(ых) процессоре(ах). Независимо от того, готова ли к выполнению хотя бы одна нить такого процесса, зарезервированные процессоры не будут использоваться ни для чего другого.
Далее, при образовании нити можно закрепить ее за одним или несколькими процессорами из числа зарезервированных. В частности, таким образом, в принципе можно привязать нить к некоторому фиксированному процессору. В общем случае некоторая совокупность потоков управления привязывается к некоторой совокупности процессоров так, чтобы среднее время реакции системы реального времени удовлетворяло внешним критериям. Очевидно, что это "ассемблерный" стиль программирования (слишком много перекладывается на пользователя), но зато он открывает широкие возможности перед разработчиками систем реального времени (которые, правда, после этого зависят не только от особенностей конкретной операционной системы, но и от конкретной конфигурации данной компьютерной установки). Подход Solaris преследует цели удовлетворить разработчиков систем "мягкого" (а, возможно, и "жесткого") реального времени, и поэтому фактически дает им в руки средства распределения критических вычислительных ресурсов.
В других подходах в большей степени преследуется цель равномерной балансировки загрузки мультипроцессора. В этом случае программисту не предоставляются средства явной привязки процессоров к процессам или нитям. Система допускает явное распараллеливание в пределах общей виртуальной памяти и "обещает", что по мере возможностей все процессоры вычислительной системы будут загружены равномерно. Этот подход обеспечивает наиболее эффективное использование общих вычислительных ресурсов мультипроцессора, но не гарантирует корректность выполнения систем реального времени (если не считать возможности установления специальных приоритетов реального времени).
Отметим существование еще одной аппаратно-программной проблемы, связанной с нитями (и не только с ними). Проблема связана с тем, что в существующих симметричных мультипроцессорах обычно каждый процессор обладает собственной сверхбыстродействующей буферной памятью (кэшем). Идея кэша, в общих чертах, состоит в том, чтобы обеспечить процессору очень быстрый (без необходимости выхода на шину доступа к общей оперативной памяти) доступ к наиболее актуальным данным. В частности, если программа выполняет запись в память, то это действие не обязательно сразу отображается в соответствующем элементе основной памяти; до поры до времени измененный элемент данных может содержаться только в локальном кэше того процессора, на котором выполняется программа. Конечно, это противоречит идее совместного использования виртуальной памяти нитями одного процесса (а также идее использования памяти, разделяемой между несколькими процессами).
Реферат опубликован: 6/09/2006