Разработка программно-методического комплекса для анализа линейных цепей

Страница: 6/13

X(t),dX(t)/dt,Y(t)-вектора

С,G-матрицы.

Это система линейных обыкновенных дифференциальных уравнений 1-го порядка с постоянными коэффициентами в неявной форме.

Решаем полученную систему.

Достоинства:

1. В модели могут быть любые типы источников.

2. Низкая трудоемкость (т. к. метод прост).

3. Отсутствуют интегральные уравнения.

Недостатки:

Выросла размерность решаемых задач.

3) Построение модели в СГКБ с помощью МПС

Ul

dX(t)/dt=x(t)+C*Y(t) X= ; X(0)=X0

Uc

МПС сложен для осмысления и для реализации. МПС можно построить, если в схеме нет топологических выражений (это контуры из емкостей или звезды из индуктивностей).

Чтобы выйти из этой ситуации, в схему вводят дополнительные элементы, но снижается точность вычислений.

X0(t0), X0(t0), X0(t0) . ;t=ti-ti-1 ;Xi=f(xi-1)

Вывод: модели СГКБ имеют смысл, когда êlmaxï/ïlminï<= 100, где lmax и lmin - собственные значения матрицы (А- Е).

Определение квазистатических (частотных) характеристик линейных эквивалентных схем.

Для большинства линейных схем характерными являются такие показатели, как добротность, полоса пропускания, равномерность усиления в некотором частотном диапазоне и другие, определяемые по АЧХ и ФЧХ.

Основными широко применяемыми при “ручных” расчетах схем являются методы операционного исчисления, и в частности, спектральный (частотный) метод Фурье.

С помощью преобразований Лапласа решения системы линейных дифф. уравнений переводятся в область комплексной переменной p=Y+jw, показываемой комплексной частотой.

Функция от t, к которой применено преобразование Лапласа, называется оригиналом, а соответствующая функция от р - изображением. Связь между ними определяется формулами:

F(p)=òf(t)*e-ptdt f(t)=1/2*пjòF(p)*eptdt

первые пределы:[0;бесконечность]

вторыке пределы:[g-jw;l+jw]

Основная цель этих преобразований - сведение дифференциальных уравнений к чисто алгебраическим относительно комплексной частоты р. Так, при нулевых начальных условиях операция дифференцирования соответствует умножению на р-изображение, следовательно, при х0=0 уравнения системы:

.

х = Ах + f(t) х = х0

t=t0

х(t) - вектор переменных состояния,

А - матрица размерностью n x n,

х0 - вектор начальных значений

будут иметь вид:

р Х(р) = А Х(р) - F(р)

а решение исходной системы вида:

х(t) = eAtx0 +òeA(t-s) f(S)dS, где еAt =S(At)k /k! (матричная экспонента)

будет иметь вид:

Х(р) = (рЕ - А)-1 * F(p) = K(p) F(p)

Так как выходные токи и напряжения линейным образом выражаются через переменные состояния и входные воздействия, то вектор выходных переменных z = Bx + Cf , где В, С - матрицы. Тогда матрица В(рЕ - А)-1 + С соответствует матричной передаточной функции, обозначаемой обычно К(р). Отношения любых переменных вектора неизвестных называются схемными функциями. Численный расчет или формирование аналитических выражений для схемных функций составляют основу задачи анализа линейных эквив. схем в частотной области. Согласно правилам Крамера, эти функции описываются линейной комбинацией отношений алгебраических дополнений матрицы А. Таким образом, в общем случае схемные функции есть дробно-рациональные выражения относительно комплексной частоты. Форма их представления называется символьной (буквенной), если коэффициенты при различных степенях р определены через параметры элементов схемы. Если коэффициенты получены в численном виде, то такую форму представления принято называть символьно-численной или аналитической.

Реферат опубликован: 26/04/2007