Страница: 2/23
3. Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. При этом возможны следующие варианты:
а \, б/ (вверх) , в\ (вниз).
Если точки на графике расположены беспорядочно (а), то зависимость между изучаемыми признаками отсутствует.
Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.
Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.
На основе метода параллельных данных и графического метода, могут быть рассчитаны показатели, характеризующие степень тесноты корреляционной зависимости.
Наиболее кратным из них является коэффициент знаков Фехнера. Он рассчитывается по формуле:
C - сумма совпадающих знаков отклонений индивидуальных значений признака от средней.
H - сумма несовпадений
Данный коэффициент изменяется в пределах (-1;1).
Значение KF=0 свидетельствует об отсутствии зависимости между изучаемыми признаками.
Если KF=±1, то это говорит о наличии функциональной прямой (+) и обратной (-) зависимости. При значении KF>½0,6½ делается вывод о наличии сильной прямой (обратной) зависимости между признаками.
- квадраты разности рангов
(R2-R1), n - число пар рангов
Данный коэффициент, как и предыдущий, изменяется в тех же пределах и имеет одинаковую с KF экономическую интерпретацию.
52. Непараметрические показатели тесноты взаимосвязи. Спирмен. Кендалл.
54. Понятие ранга динамики. Виды динамических рядов.
В анализе социально-экономических явлений часто приходится прибегать к различным условным оценкам, например рангам, а взаимосвязь между отдельными признаками измерять с помощью непараметрических коэффициентов связи. Данные коэффициенты исчисляются при условии, что исследуемые признаки подчиняются различным законам распределения.
Ранжирование - это процедура упорядочения объектов изучения, которая выполняется на основе предпочтения.
Ранг - это порядковый номер значений признака, расположенных в порядке возрастания или убывания их величин. Если значения признака имеют одинаковую количественную оценку, то ранг всех этих значений принимается равным средней арифметической от соответствующих номеров мест, которые определяют. Данные ранги называют связными.
Принцип нумерации значений исследуемых признаков является основой непараметрических методов изучения взаимосвязи между социально-экономическими явлениями и процессами.
Среди непараметрических методов оценки тесноты связи наибольшее значение имеют ранговые коэффициенты Спирмена (r) и Кендалла (t). Эти коэффициенты могут быть использованы для определения частоты связей как между количественными, так и между качественными признаками при условии, если их значения упорядочить или проранжировать по степени убывания или возрастания признака.
Коэффициент корреляции рангов (коэффициент Спирмена) рассчитывается по формуле (для случая, когда нет связных рангов). Коэффициент Спирмена принимает любые значения в интервале [-1;1].
Ранговый коэффициент корреляции Кендалла (t) может также использоваться для измерения взаимосвязи между качественными признаками, характеризующими однородные объекты, ранжированные по одному принципу.
Расчет данного коэффициента выполняется в следующей последовательности:
1. Значения X ранжируются в порядке возрастания или убывания
2. Значения Y располагаются в порядке, соответствующим значениям X
3. Для каждого ранга Y определяется число следующих за ним значений рангов, превышающих его величину
4. Для ранга Y определяется число следующих за ним рангов, меньших его величины. Суммарная величина обозначается через Q и фиксируется со знаком (-)
5. Определяется сумма баллов по всем членам ряда.
Для определения тесноты связи между произвольным числом ранжированных признаков применяется множественный коэффициент ранговой корреляции (коэффициент конкордации) (W).
Реферат опубликован: 4/11/2008