Ряды динамики

Страница: 7/9

Аналитическое выравнивание . Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления . Развитие предстает перед исследователем как бы в зависимости только от течения времени . В итоге выравнивания временного ряда получают наиболее общий , суммарный , проявляющийся во времени результат действия всех причинных факторов . Отклонение конкретных уровней ряда от уровней , соответствующих общей тенденции , объясняют действием факторов , проявляющихся случайно или циклически . В результате приходят к трендовой модели , выраженной формулой 27:

, (27)

где f(t) – уровень , определяемый тенденцией развития ;

-- случайное и циклическое отклонение от тенденции.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом , чтобы она давала содержательное объяснение изучаемого процесса .

Чаще всего при выравнивании используются следующий зависимости :

линейная ;

параболическая ;

экспоненциальная

или ).

Линейная зависимость выбирается в тех случаях , когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты , не проявляющие тенденции ни к увеличению , ни к снижению.

Параболическая зависимость используется , если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития , но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют .

Экспоненциальные зависимости применяются , если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста , темпов прироста , коэффициентов роста) , либо , при отсутствии такого постоянства , -- устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста , цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.д.).

Оценка параметров () осуществляется следующими методами :

Методом избранных точек,

Методом наименьших расстояний,

Методом наименьших квадратов (МНК)

В большинстве расчетов используется метод наименьших квадратов , который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных :

.

Для линейной зависимости () параметр обычно интерпретации не имеет , но иногда его рассматривают , как обобщенный начальный уровень ряда ; -- сила связи , т. е. параметр , показывающий , насколько изменится результат при изменении времени на единицу . Таким образом , можно представить как постоянный теоретический абсолютный прирост .

Построив уравнение регрессии , проводят оценку его надежности . Это делается посредством критерия Фишера (F) . Фактический уровень () , вычисленный по формуле 28, сравнивается с теоретическим (табличным) значением :

, (28)

где k -- число параметров функции , описывающей тенденцию;

n -- число уровней ряда ;

Остальные необходимые показатели вычисляются по формулам 29 – 31 :

(29)

(30)

(31)

сравнивается с при степенях свободы и уровне значимости a (обычно a = 0,05). Если >, то уравнение регрессии значимо , то есть построенная модель адекватна фактической временной тенденции.

Реферат опубликован: 28/01/2009