Ряды динамики

Страница: 8/9

Анализ сезонных колебаний

Уровень сезонности оценивается с помощью :

индексов сезонности ;

гармонического анализа.

Индексы сезонности показывают , во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня , вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет . Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года . Индексы сезонности – это , по либо уровень существу , относительные величины координации , когда за базу сравнения принят либо средний уровень ряда , либо уровень тенденции . Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции .

Если тренда нет или он незначителен , то для каждого месяца (квартала) индекс рассчитывается по формуле 32:

(32)

где -- уровень показателя за месяц (квартал) t ;

-- общий уровень показателя .

Как отмечалось выше , для обеспечения устойчивости показателей можно взять больший промежуток времени . В этом случае расчет производится по формулам 33 :

(33)

где -- средний уровень показателя по одноименным месяцам за ряд лет ;

Т -- число лет .

При наличии тренда индекс сезонности определяется на основе методов , исключающих влияние тенденции . Порядок расчета следующий :

для каждого уровня определяют выравненные значения по тренду f(t);

рассчитывают отношения ;

при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 34 :

,(Т -- число лет). (34)

Другим методом изучения уровня сезонности является гармонический анализ . Его выполняют , представляя временной ряд как совокупность гармонических колебательных процессов .

Для каждой точки этого ряда справедливо выражение , записанное в виде формулы 35 :

(35)

при t = 1, 2, 3, . , Т.

Здесь -- фактический уровень ряда в момент (интервал) времени t;

f(t) – выравненный уровень ряда в тот же момент (интервал) t

-- параметры колебательного процесса (гармоники) с номером n , в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки .

Общее число колебательных процессов , которые можно выделить из ряда , состоящего из Т уровней , равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник . Параметры гармоники с номером n определяются по формулам 36 –38 :

; (36)

(37)

при n=1,2, .,(T/2 – 1);

3) (38)

Анализ взаимосвязанных рядов динамики .

В простейших случаях для характеристики взаимосвязи двух или более рядов их приводят к общему основанию , для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста .

Коэффициенты опережения по темпам роста – это отношение темпов роста (цепных или базисных) одного ряда к соответствующим по времени темпам роста (также цепным или базисным) другого ряда . Аналогично находятся и коэффициенты опережения по темпам прироста .

Анализ взаимосвязанных рядов представляет наибольшую сложность при изучении временных последовательностей . Однако нередко совпадение общих тенденций развития может быть вызвано не взаимной связью , а прочими неучитываемыми факторами . Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций , а после этого провести анализ взаимосвязи по отклонениям от тренда . Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление связи между признаками .

Под автокорреляцией понимается зависимость последующих уровней ряда от предыдущих . Проверка на наличие автокорреляции осуществляется по критерию Дарбина – Уотсона (формула 39) :

Реферат опубликован: 28/01/2009