Введение в популяционную и медицинскую генетику

Страница: 6/12

*– частоты аллелей после отбора: p1= (p– p2S1)/(1–S1 p2–S2q2); q1= (q – q2 S2)/(1–S1 p2–S2q2).

Δ q=pq(pS1– qS2)/(1–S1 p2–S2q2); при положительных значениях частота рецессивного признака увеличивается, при отрицательных – уменьшается, до тех пор. пока не достигнется состояние равновесия, т.е. pS1=qS2. Равновестные частоты равны q*= S1/(S1+ S2), p*=S2/(S1+ S2). Равновесия при отборе в пользу гетерозигот – устойчивое, оно определяется коэффициентом отбора.

Рисунок 1.

Хорошо известным примером сверхдоминирования может служить серповидноклеточная анемия, широко распространенная в некоторых странах Африки и Азии. Нормальный гемоглобин обозначается HbAHbA, аномальный – HbSHbS. Возможно наличие трех вариантов генотипов: HbAHbA (1– S1), HbAHbS (1), HbSHbS (1–S2). S2 близок к единице, т.к. HbSHbS редко выживают. Приспособленность HbAHbA близка к единице в районах, где малярия не наблюдается. Из этого следует, что q*= S1/(S1+ S2) приблизительно равна S1/(1+S1).

Несмотря на то, что большинство людей с генотипом HbSHbS погибают до достижения половозрелости, частота аллеля HbS достигает в ряде районов земного шара довольно высоких значений, причем именно в тех районах, в которых распространена особая форма малярии, вызываемая паразитом Plasmodium falciparium. Гетерозигота HbAHbS более устойчива к малярии, чем нормальная гомозигота HbAHbA, поэтому в районах рапространения малярии указанной формы она обладает селективным преимуществом по сравнению с обоими гомозиготами, у которых смертность от анемии (HbSHbS) или от малярии (HbAHbA) выше, чем у гетерозигот.

Серповидноклеточная анемия представляет собой пример зависимости приспособленности генотипов от окружающей среды. В тех местах, где малярию искоренили или где ее никогда не было, гомозиготы HbAHbA обладают одинаковой приспособленностью с гетерозиготами. При этом направление отбора изменяется, он уже не благоприятсвует гетерозиготам, а направлен против рецессивных гомозигот и приводит к эллиминации рецессивного аллеля.

4. Отбор против гетерозигот.

Возможны ситуации, в которых гетерозигота обладает более низкой приспособленностью, чем обе гомозиготы. Примером такого рода могут служить транслокации, что связано с более низкой плодовитостью гетерозигот в данном случае.

Таблица 7*

Генотип

АА

Аа

аа

Сумма

Частота гена до отбора, f

p2

2pq

q2

1

Относительная приспособленность, W

1

1–S

1

Частота гена после отбора, fW

p2

2pq(1–S)

q2

T=1–2Spq

Нормализованные частоты

p2/T

2pq(1–S)/T

q2/T

Частота после отбора, до случайного скрещивания

p12

2p1q1

q12

* – частоты аллелей после отбора: p1=1/(1+q); q1=q2/(1+q).

Количество изменений аллелей за одно поколение будет: Δq=–q2/(1+q). Δq пропорциональна q2 (частоте рецессивных гомозигот), т.е. чем больше частота, тем больше количество изменений. Δq всегда отрицательная величина (или равная нулю), значит значение q уменьшается в результате отбора. Иногда происходит не полная эллиминация, а частичный отбор, т.е. не все особи доживают до репродуктивного возраста и оставляют жизнеспособное потомство.

Введем понятие коэффициент отбора S, W = 1 – S. S пропорциональна снижению воспроизводства генотипа по сравнению с нейтральным, приспособленность которого условно принимается за единицу. Для нейтральных признаков S = 1, для нейтральных – S = 0.

Реферат опубликован: 27/08/2008