Волоконно-оптические линии связи

Страница: 10/21

К счастью, как это уже неоднократно бывало в истории техники, оптимисты опять не поверили оценкам экспертов. Они начали работать над улучшением «неулучшаемых» оптических стекол.

В 1970 г. в результате достижения высокой чистоты исходного материала амери­канской фирме Coming Glass удалось выплавить стекло с ослаблением около 30 дБ/км. Для этой цели необходимо было снизить относительное содержание металлических ком­понентов в исходном материале стекла до 10-8 и менее.

Двадцать лет назад возникновение полупроводниковой техники поставило техно­логию материалов перед совершенно новыми проблемами, то же произошло и при разра­ботке технологии получения стекла.

С этого момента все другие решения были забыты. Целью стал максимально про­зрачный световод. Достигнутые в лаборатории, а вскоре и в опытном производстве значения ослабления заметно снизились, и пятью годами позже были получены образцы с ослаблением 5 дБ/км, т. е. гораздо меньше, чем надеялись. Открылись новые пути: в оп­ределенных областях длин волн ослабление измерялось значениями, гораздо меньшими 1 дБ/км; длины усилительных участков, о которых в области электрической кабельной свя­зи приходилось только мечтать, в системах оптической связи стали предметом обсужде­ния.

В таблице приведены ослабление и глубина проникновения (потери мощности 50 %) для различных светопрозрачных сред.

Среда

Ослабление,

дБ/км

Глубина

проникновения при ослаблении 30 дБ/м

Оконное стекло

Оптическое стекло

Густой туман

Атмосфера над городом

Световоды серийного производства

Опытные лабораторные световоды (l = 1,6mkm)

50000

3000

500

10

3

0,3

0,65

10

60

3300

10000

100000

В середине 70-х годов работы по передаче сигналов по волоконно-оптическим ли­ниям приобрели широкий размах. Техника оптической связи родилась во второй раз - и теперь окончательно.

Глава пятая

СВЕТОВОД — ПОСРЕДНИК МЕЖДУ ПЕРЕДАТЧИКОМ И ПРИЕМНИКОМ

5.1 Ослабление означает потерю световой энергии

Уменьшение потерь света являлось ключевой первоочередной проблемой техники оптической связи. Два фактора являются основными причинами этих потерь: поглощение света и рассеяние света.

Уже при обсуждении лазерного эффекта мы столкнулись с тем, что атомы реаги­руют селективно на длину волны излучения в зависимости от структуры оболочки и от­крытого Планком соотношения между энергией и частотой. Таким образом, следует ожи­дать, что и «прозрачный» исходный материал нашего световода, прежде всего лишенный примесей, прозрачен и не имеет значительных потерь только в определенном диапазоне частот. На других длинах волн возникает явление резонанса, при этом световая энергия поглощается и превращается в теплоту.

Фактически чистое кварцевое стекло (SiO2), которое предпочтительно в качестве исходного материала для световода, обнаруживает такие резонансы в области длин волн 10-20 мкм. Эта область лежит за пределами области длин волн, используемых сегодня в технике связи. В спектральной области, в которой излучают современные лазеры и светоизлучающие диоды, максимальное значение ослабления в SiO2 мало, но для длин волн свыше 1,6 мкм его действие ощутимо и возрастает с увеличением длины волны.

Реферат опубликован: 31/05/2008