Страница: 7/21
Этот эффект применяется для модуляции световых лучей, когда имеется возможность изменять плоскость поляризации света желаемым образом, в соответствии с изменением модулирующего (передаваемого) сигнала. Осуществить такую модуляцию можно с использованием известного электрооптического эффекта: если послать луч света через кристалл определенного состава и к нему перпендикулярно направлению распространения света приложить электрическое поле, то плоскость поляризации света тем больше поворачивается в зоне действия поля, чем выше его напряженность, т. е. чем выше приложенное для создания поля напряжение.
Для этой цели подходят монокристаллы дигидрофосфат аммония (NH4H2PO4) и дигидрофосфат калия (КН2РО4}, коротко они обозначаются как ADP или KDP кристаллы.
Описанным эффектом объясняется механизм действия электрооптического модулятора. Свет, покидающий газовый лазер, попутно может быть поляризован устройством в разрядной трубке оптического окна, расположенного под углом Брюстера. Поляризация может быть осуществлена также и с помощью поляризационного фильтра.
Линейная модуляция, прежде всего, преобразуется в круговую модуляцию с помощью так называемой четвертьволновой пластинки. В кристалле ADP эта модуляция в зависимости от сигнала становится более или менее эллиптической. На выходе поляризационного фильтра затем получается свет, модулированный по интенсивности. Если к электродам кристалла не приложено напряжение, то направление поляризации в кристалле не меняется и ориентация подключенного поляризационного фильтра соответствует плоскости поляризации света, выходящего из лазера (или после модулятора), причем свет проходит через все устройство практически неослабленным. Но если напряжение на электрооптическом кристалле повышается и при этом увеличивается угол поляризации выходящего света, то через поляризационный фильтр проходит уменьшающаяся часть света. При изменении поляризации на 90° второй фильтр полностью поглощает излучение и на выходе устройства образуется темнота.
Подобные модуляторы подходят также для очень быстрых изменений прилагаемого модулирующего напряжения. Они преобразуют передаваемый сигнал в полосе выше 1 ГГц, гораздо большей, чем это было возможно электрическими методами.
Модуляция интенсивности лазерного излучения без модуляции направления поляризации несомненно представляла бы собой технически более изящное решение. Кроме описанного конструктивного принципа (так называемой внешней модуляции лазера) можно реализовать другие варианты. Кристалл можно было бы, например, встроить в корпус резонатора газового лазера и обойтись значительно меньшей мощностью модулирующего сигнала (внутренняя модуляция). Тем самым устранялся бы существенный недостаток кристаллических модуляторов, обладавших в целом хорошими модуляционными характеристиками: потребность в больших напряженностях управляющего поля и соответственно высоких управляющих напряжениях (до нескольких сотен вольт).
В результате развития лазерной техники выяснилось, что для инженера простая модулируемость имеет преимущество перед когерентностью. Недостатки газового лазера, включая сложную модуляцию его излучения, уравновесили в системах связи потери в приемнике прямого усиления. Поэтому газовый лазер в основном исчез с рабочих столов инженеров по оптической технике связи и освободил место инжекционным лазерам и светоизлучающим диодам, даже с учетом ряда их недостатков, которые можно было устранить только в процессе последовательной неустанной работы по их совершенствованию.
Реферат опубликован: 31/05/2008