Страница: 3/21
Молекулам и атомным комплексам (кристаллам) присущи принципиально неизменные свойства, но не столь простые, как это представлено в примере с одиночным атомом водорода. Прежде всего, различия проявляются во влиянии соседних атомов. Поэтому дискретные энергетические состояния, которые следуют из наличия вышеописанных электронных орбит, как правило, размываются. В связи с этим появляются определенные энергетические области (энергетические зоны). Имеет также существенное значение, что отдельные единичные переходы (с одного энергетического уровня на другой) более или менее «запрещены», т. е. они не должны иметь места (эти запреты надо понимать не совсем буквально).
В качестве примера можно было бы назвать схему энергетических уровней ионов трехвалентного хрома, которые играют главную роль в одном из первых экспериментальных образцов лазера — в рубиновом лазере.
В этой связи отметим два таких энергетических уровня в атоме хрома: основной уровень Е1, и состояние Е2. Переход с уровня Е2 на основной Е1, строго говоря, запрещен, т. е. электрон на уровне Е2 мог бы быть устойчивым. Практически, однако, этого не происходит; находящийся на уровне Е2 электрон может удерживаться в этом состоянии приблизительно до 0,01 с. [В сравнении с длительностями пребывания в других нестабильных состояниях (10-8 c) это — длительное время.] Такое состояние называется метастабильным, и это явление особенно важно в работе лазера: оно придает метастабильному состоянию Е2 свойства накопителя энергии.
Если стержневидный рубиновый кристалл (Al2О3) с добавлением ионов хрома облучить интенсивным зеленым светом, то происходит следующее. Прежде всего, в результате подведенной световой энергии электроны с основного уровня Е1 переносятся в энергетическую зону Е2 (не прямо, а через неустойчивую энергетическую зону Е3 но это в данном случае несущественно). Атом за счет этой внешней энергии теперь возбужден «накачан», более того, совокупность атомов достигла так называемой инверсии населенностей (электронами) энергетических зон. Нижняя энергетическая зона, обычно сильно населенная, в данном случае почти пуста, напротив, более высокий уровень Е2, первоначально не сильно заселенный электронами, теперь значительно ими занят. Но это состояние атомов, как уже упоминалось, довольно устойчиво. Подведенная энергия накапливается.
С этого состояния начинается цепная реакция, подобная процессу в генераторе с обратной связью, вызываемая случайным процессом излучения энергии хотя бы одним из возбужденных атомов. Такой атом случайно переходит из состояния Е2 в состояние Е1, и при этом отдает энергию излучения — сравнительно короткую последовательность колебаний, но все же достаточную, чтобы встретить на своем пути через стержневидный кристалл второй возбужденный атом. Частота этого колебания определяется по закону Планка разностью энергий Е2 и Е1, и соответствует длине волны приблизительно 694 нм или красному световому импульсу, находящемуся в видимой области спектра.
Этот процесс называется индуцированным или стимулированным излучением. Индуцированное колебание согласуется по частом и фазе с индуцирующим колебанием таким образом, что с полным основанием можно говорить об «усилении света индуцированной эмиссией излучения". Отсюда произошло слово LASER: light amplification by stimulated emission of radiation.
Если в установившемся режиме энергия излучения при прохождении сигнала через кристалл больше потерь на поглощение энергии, то получается эффект самовозбуждения такой же, как в генераторе с обратной связью. Единичное спонтанное излучение связано с продолжительными непрерывными световыми колебаниями в теле кристалла (поскольку в кристалле постоянно имеется достаточное количество возбужденных атомов). Если нанести на одну из торцевых поверхностей стержня полупрозрачный зеркальный слой, то часть энергии излучения покинет кристаллический стержень в виде когерентного светового излучения.
Реферат опубликован: 31/05/2008