Страница: 2/6
а—с детектором на входе; б — с усилителем переменного тока на входе.
коэффициента деления ВУ и коэффициента усиления усилителей диапазон измеряемых напряжений может быть большим у вольтметров обеих модификаций.
Тип детектора в структурных схемах рис. 3.14 определяет принадлежность вольтметров обеих модификаций к вольтметрам амплитудного, среднеквадратического или средневыпрямленного напряжения. При этом вольтметры импульсного тока (В4) проектируются только как вольтметры первой модификации, чтобы избежать искажений формы импульсов в усилителе переменного тока. При измерении напряжения одиночных и редко повторяющихся импульсов применяются либо диодно-емкостные расширители импульсов в сочетании с детекторами, либо амплитудно-временное преобразование импульсов, характерное для цифровых вольтметров.
Рассмотрим теперь типовую структурную схему селективных вольтметров, которые используются при измерении малых гармонических напряжений в условиях действия помех, при исследовании спектров периодических сигналов и в целом ряде других случаев. Как видно из рис. 3.15, вольтметр представляет собой по существу супергетеродинный приемник, принцип работы которого поясняется в курсе «Радиотехнические цепи и сигналы».
Частотная селекция входного сигнала осуществляется с помощью перестраиваемого гетеродина, смесителя (См) и узкополосного усилителя промежуточной частоты (УПЧ), который обеспечивает высокую чувствительность и требуемую избирательность. Если избирательность недостаточна, может быть применено двукратное, а иногда и трехкратное преобразование частоты. Кроме того, в селективных вольтметрах обязательно наличие системы автоматической подстройки частоты и калибратора. Калибратор — образцовый
источник (генератор) переменного напряжения определенного уровня, позволяющий исключить систематические, погрешности из-за изменения напряжения гетеродина при его перестройке, изменения коэффициентов передачи узлов вольтметра, влияния внешних факторов и т. д. Калибровка вольтметра производится перед измерением при установке переключателя П из положения 1 в положение 2.
Рис. 3.15. Структурная схема селективного вольтметра.
В заключение отметим, что в одном приборе нетрудно совместить функции измерения постоянных и переменных напряжений, а с помощью дополнительных функциональных узлов и соответствующих коммутаций (по аналогии с выпрямительными приборами) образовать комбинированные приборы, получившие название универсальных вольтметров (В7). Современные типы таких вольтметров, как правило, проектируются в виде цифровых приборов, что позволяет дополнительно расширить их функциональные возможности и повысить точность. В связи с этим особенности построения структурных схем универсальных вольтметров будут рассмотрены в работах коллег.
АНАЛОГОВЫЕ ВОЛЬТМЕТРЫ СРАВНЕНИЯ
Рис. 3.16. Схема измерительного потенциометра.
Электронные аналоговые вольтметры сравнения в большинстве своем реализуют наиболее распространенную модификацию метода сравнения — нулевой метод. Поэтому чаще они называются компенсационными вольтметрами. По сравнению с вольтметрами прямого преобразования это более сложные, но и, как подчеркивалось ранее более точные приборы. Кроме того, из схемы рис. 2.2 видно, что в момент компенсации DХ=0 и прибор не потребляет мощности от источника X. Применительно к компенсационным вольтметрам это означает возможность измерения не только напряжения, но и ЭДС маломощных источников. В практике электрорадиоизмерений подобные измерения выполняются как с помощью электронных компенсационных вольтметров, так и электромеханических. Для пояснения применения нулевого метода при измерении ЭДС и напряжения рассмотрим вначале классическую схему электромеханического компенсатора постоянного тока, представленную на рис. 3.16.
Реферат опубликован: 4/12/2006