Страница: 3/10
Освещение негативного фоторезиста вызывает дополнительную полимеризацию его молекул, вследствие чего после проявления пластины полупроводника на ней остаются нерастворимые участки рисунка, которые представляют собой негативное изображение фотошаблона, а неосвещенные участки фоторезиста смываются в растворителе при проявлении.
В позитивном фоторезисте под действием света происходит разрушение молекул. При проявлении такой фоторезист удаляется с освещенных участков, а на поверхности пластины остается позитивное изображение фотошаблона,
Фоторезист должен быть чувствительным к облучению, иметь высокие разрешающую способность и кислотостойкость.
Для создания определенного рисунка с помощью фоторезиста используется фотошаблон, представляющий собой пластину из оптического стекла, на поверхности которой содержится рисунок соответствующий по размерам будущей микросхеме. Фотошаблон может содержать до 2000 изображений одной микросхемы.
Последовательность фотолитографического процесса состоит в следующем .
На окисленную поверхность кремния с толщиной окисла 3000 - 6000 А наносят слой фоторезиста с помощью центрифуги. Фоторезист сушат сначала при комнатной температуре, затем при температуре 100 -150 0С.
Подложку совмещают с фотошаблоном и облучают ультрафиолетовым излучением. Засвеченный фоторезист проявляют, а затем промывают в деионизированной воде. Оставшийся фоторезист задубливают при комнатной температуре и температуре 200 °С в течение одного часа, после чего окисленная поверхность кремния открывается в местах, соответствующих рисунку фотошаблона. Открытые участки окисла травят в специальных буферных травителях (например, 10 мл НF и 100 мл NH4F в воде). На участки окисла, покрытые фоторезистом, травитель не действует. После травления фоторезист растворяют органическим растворителем и горячей серной кислотой. Поверхность пластины тщательно промывают. На поверхности кремния остается слой SiO2, соответствующий рисунку схемы
4 - диффузия для создания скрытого n-слоя.
Локальная диффузия является одной из основных технологических операций при создании полупроводниковых ИМС.
Диффузия в полупроводниковых кристаллах представляет собой направленное перемещение примесных атомов в сторону убывания их концентрации. В качестве легирующих примесей в кремнии используются в основном бор и фосфор, причем бор создает примеси акцепторного типа, а фосфор донорного. Для бора и фосфора энергия активации соответственно равна 3,7 и 4,4 эВ. Различают два режима диффузии: диффузия из неограниченного источника и диффузия из ограниченного источника. В производстве ИМС реализуются оба случая диффузии. Диффузия из неограниченного источника представляет собой первый этап диффузии, в результате которого в полупроводник вводится определенное количество примеси. Этот процесс называют загонкой примеси.
Для создания заданного распределения примесей в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси.
Локальную диффузию проводят в открытые участки кремния по методу открытой трубы в потоке газа - носителя. Температурный интервал диффузии для кремния составляет 950 - 1300 °С. Кремниевые пластины размещают в высокотемпературной зоне диффузионной печи. Газ - носитель в кварцевой трубе при своем движении вытесняет воздух. Источники примеси, размещенные в низкотемпературной зоне, при испарении попадают в газ - носитель и в его составе проходят над поверхностью кремния.
Источники примеси, применяемые в производстве ИМС, могут быть твердыми: жидкими и газообразными. В качестве жидких источников используются хлорокись фосфора РОСlз и ВВrз. После установления температурного режима в рабочую зону печи поступает кислород, что способствует образованию на поверхности кремния фосфоро - и боросиликатного стекла. В дальнейшем диффузия проходит из слоя жидкого стекла Одновременно слой стекла защищает поверхность кремния от испарения и попадания посторонних частиц. Таким образом, в локальных участках кремния происходит диффузия легирующей примеси и создаются области полупроводника с определенным типом проводимости.
После первой фотолитографии проводится локальная диффузия донорной примеси с малым коэффициентом диффузии (Аs, Sb) и формируется скрытый высоколегированный слой n+ глубиной около 2 мкм.
Примесь с малым коэффициентом диффузии необходимо использовать, чтобы свести к минимуму изменение границ скрытого слоя при последующих высокотемпературных технологических операциях. После этого с поверхности полностью удаляется слой окисла и пластина очищается. На очищенной поверхности кремния выращивается эпитаксиальный слой n-типа толщиной 10-15 мкм с удельным сопротивлением 0,1 - 10 Ом*см.
5 - снятие окисла и подготовка поверхности перед процессом эпитакси-ального наращивания;
6 - формирование эпитаксиальной структуры;
Эпитаксия представляет собой процесс роста монокристалла на ориентирующей подложке. Эпитаксиальный слой продолжает кристаллическую решетку подложки. Толщина его может быть от монослоя до нескольких десятков микрон. Эпитаксиальный слой кремния можно вырастить на самом кремнии. Этот процесс называется авто - или гомоэпитаксией. В отличие от авто-эпитаксии процесс выращивания монокристаллических слоев на подложках, отличающихся по химическому составу, называется гетероэпитаксией.
Реферат опубликован: 2/08/2009