Страница: 6/10
в нашем случае Sб.бок = 719 мкм2
5. Последовательность расчета параметров интегральных резисторов.
Параметры, которые определяют сопротивление интегрального резистора, можно разделить на две группы:
1) параметры полупроводникового слоя:
толщина W;
характер распределения примеси по глубине N(x);
зависимость подвижности носителей заряда от концентрации m(N);
2)топологические параметры :
длина резистора l;
ширина резистора b.
Первая группа параметров оптимизируется для получения наилучших результатов интегральных транзисторов. Именно для этого расчет транзисторов производится в первую очередь. Таким образом, задача расчета резистора сводится к выбору полупроводникового слоя, в котором будет создаваться резистор, и формы контактов и вычисления длины и ширины.
Воспроизводимость номинальных значений сопротивления обычно равна 15-20% и зависит от ширины резистора. Так, при возрастании ширины от 7 до 25 мкм точность воспроизведения номинала возрастает с ±15 до ±18%.
5.1 Диффузионные резисторы на основе базовой области.
Резисторы данного типа приобрели наибольшее распространение, так как при их использовании достигается объединение высокого удельного сопротивления, что необходимо для уменьшения площади, которую занимает резистор, и сравнительно небольшого температурного коэффициента ТКR ( ±(0,5…3)·10-3 1/°С ).
5.2. Исходные данные для расчета топологических параметров полупроводниковых резисторов.
Для расчета длины и ширины резисторов необходимы следующие входные данные:
1) номинальные значения сопротивлений R, заданные в принципиальной схеме.
R1- R4 – 4700 Ом;
R5 – 3300 Ом.
2) допустимая погрешность D R.
Исходя из технологических возможностей оборудования выберем DR = 20%
3) рабочий диапазон температур (Tmin , Tmax).
Исходя из предположения, что разрабатываемая ИМС будет предназначена для эксплуатации в климатических условиях, характерных для широты Украины, выберем диапазон температур, определяемый климатическим исполнением УХЛ 3.0 (аппаратура, предназначенная для эксплуатации в умеренном и холодном климате, в закрытых помещениях без искусственно регулируемых климатических условий). Исходя из этого:
Tmin = -60 °С;
Tmax = +40 °С.
4) средняя мощность Р, которая рассеивается на резисторах.
Мощность, рассеиваемая на резисторах, будет расчитана на основе измерянных ранее токов через резисторы, используя закон Ома.
P = I2 R, |
( 5.1) |
где I – ток через резистор, А;
R – сопротивление резистора, Ом.
Измерянные значения токов несколько увеличим для учета возможных скачков входных токов схемы:
Табл. 6.1 Расчет мощностей резисторов
Значение тока |
IR1-4, мА |
0,26 |
IR5, мА |
4,94 | |
Увеличенное значение тока |
I ’R1-4, мА |
0,5 |
I ’R5, мА |
5 | |
Расчитанная мощность |
РR1-4, мВт |
1,175 |
РR5, мВт |
82,5 |
5.3. Последовательность расчета топологических параметров параметров полупроводниковых резисторов.
Для расчета параметров интегральных резисторов используется написанная для этих целей программа, значения рассчитанных параметров, приведенные ниже, расчитаны с ее помощью.
1. Выбираем тип резистора, исходя из его номинального сопротивления. В расчитываемой схеме все резисторы целесообразно изготовить дифузионными, сформированными в базовом р-слое.
2. Расчитываем удельное поверхностное сопротивление:
|
( 5.2) |
где Na0 – концентрация акцепторов у поверхности базы, см-3 ;
N – концентрация акцепторов в базе, см-3 ;
Nдк – концентрация доноров в коллекторном слое, см-3 ;
q – единичный заряд, Кл;
m - подвижность носителей заряда, см2/В·с;
W – глубина коллекторного p-n перехода, мкм;
Для расчета принимаем Na0 = 8*1018 см-3 ; Nдк = 1016 см-3 ; значения интегралов расчитываются численными методами на основе существующих зависимостей подвижности носителей от их концентрации. В результате rS = 222,81 Ом/. Типичное значение поверхностного сопротивления базовой области - 200 Ом/, расчитанное значение показывает приемлемость использования выбранных концентраций.
Реферат опубликован: 2/08/2009