Страница: 4/10
Эпитаксиальный процесс позволяет получать слои полупроводника однородные по концентрации примесей и с различным типом проводимости (как электронным, так и дырочным). Концентрация примесей в слое может быть выше и ниже, чем в подложке, что обеспечивает возможность получения высокоомных слоев на низкоомной подложке.
В производстве эпитаксиальные слои получают за счет реакции на поверхности подложки паров кремниевых соединений с использованием реакции восстановления SiCl4, SiВг4.
В реакционной камере на поверхности подложки в температурном диапазоне 1150 - 1270 °С протекает реакция
SiCl4+ 2Н2 <=> Si + 4 HС1, |
(3.1) |
в результате которой чистый кремний в виде твердого осадка достраивает решетку подложки, а летучее соединение удаляется из камеры.
Процесс эпитаксиального наращивания проводится в специальных установках, рабочим объемом в которых является кварцевая труба, а в качестве газа-носителя используются водород и азот. Водород перед поступлением в рабочий объем многократно очищается от кислорода, паров воды и других примесей. При установившейся рабочей температуре в поток газа носителя добавляется хлористый водород и производится предварительное травление подложки. После этого вводятся в поток газа SiCl4 и соответствующие легирующие примеси.
7 - окисление поверхности эпитаксиального слоя для создания защитной маски при разделительной диффузии;
8 - фотолитография для вскрытия окон под разделительную диффузию;
9 - проведение разделительной диффузии и создание изолированных карманов;
Разделительная диффузия проводится в две стадии: первая (загонка) -при температуре 1100-1150 °С, вторая (разгонка) - при температуре 1200-1250 °С. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника разделенные р-n переходами. В каждой изолированной области в результате последующих технологических операций формируется интегральный элемент.
10 -окисление;
11 - фотолитография для вскрытия окон под базовую диффузию;
12 - формирование базового слоя диффузией примеси р-типа.
Для проведения базовой диффузии процессы очистки поверхности, окисления и фотолитографии повторяются, после чего проводится двухстадийная диффузия бора: первая при температуре 950-1000 °С, вторая при температуре 1150-1200 °С.
13 -окисление;
14 - фотолитография для вскрытия окон под эмиттерную диффузию;
15 - формирование эмиттерного слоя диффузией примеси n-типа;
Эмиттерные области формируются после четвертой фотолитографии Эмиттерная диффузия проводится в одну стадию при температуре около 1050 °С. Одновременно с эмиттерами формируются области под контакты коллекторов и нижние обкладки МДП-конденсаторов. В качестве легирующей примеси используется фосфор.
16 – фотолитография для вскрытия окон для травления окисла под МДП-конденсаторы.
Данный этап необходим для создания тонкого окисла между верхней и нижней обкладками конденсатора. Он получается травлением пассивирующего слоя до нужной толщины.
17 – формирование тонкого окисла в местах создания МДП-конденсаторов.
18 - фотолитография для вскрытия контактных окон;
19 - напыление пленки алюминия.
Соединения элементов ИМС создаются металлизацией. На поверхность ИМС методом термического испарения в вакууме наносится слой алюминия толщиной около 1 мкм. После фотолитографии на поверхности ИМС остаются металлические соединения, соответствующие рисунку схемы. После фотолитографии металл обжигается в среде азота при температуре около 500°С.
20 - фотолитография для создания рисунка разводки и нанесение слоя защитного диэлектрика.
21 – фотолитография для вскрытия окон контактных площадок для последующего приваривания проводников.
4. Последовательность расчета параметров биполярного транзистора.
Исходные данные для расчета.
Максимальное напряжение на коллекторном переходе: Uкб = 1,5 В
Максимальный ток эмиттера: Іэ = 4,5 мА
Граничная частота fт = 500 МГц.
Дальнейший расчет проводится с помощью программы расчета параметров биполярных транзисторов, результаты расчета, представленные ниже, были получены с помощью данной программы.
Расчет выполняется в следующей последовательности.
1. По заданному максимально допустимому напряжению Uкб определяют пробивное напряжение Uкб0 , которое должно быть хотя бы на 20% больше Uкб и учитывает возможные колебания напряжения питания, т.е. Uкб0=1,2 Uкб, в нашем случае Uкб0=1,8 В. Пробивное напряжение Uпр коллекторного перехода выбираем с коэффициентом запаса 3, это учитывает возможность пробоя по поверхности и на закруглениях коллекторного перехода. В нашем случае Uпр = 5,4 В.
По графику зависимости Uпр (Nдк) [1] , где Nдк – концентрация доноров в коллекторе, находят Nдк . В программе расчета значение концентрации находится численными методами. В нашем случае Nдк = 5·1017 см-3. Данное значение слишком велико, т.к при таком значении возможно появление паразитного n-канала, поэтому уменьшим его до 1016 см-3.
Реферат опубликован: 2/08/2009