Расчет надежности, готовности и ремонтопригодности

Страница: 5/9

Для определения вероятности безотказной работы строится граф состояний системы. На графе отмечаются все отказовые состояния, из которых запрещаются переходы в соседние исправные состояния (ставятся экраны). По графу состояний формально записывается система дифференциальных уравнений. Из анализа модели функционирования системы формулируются начальные условия эксплуатации. При определении вероятности безотказной работы в течение времени t обычно предполагается, что в момент t=0 все элементы системы исправны, т.е. эксплуатация начинается с нулевого состояния (нулевого уровня). Тогда начальными условиями функционирования системы будут , . При этих начальных условиях можно определить вероятность безотказной работы в течение времени t, используя одно из следующих соотношений:

(2.1)

(2.2)

где N+1 - число узлов в графе, равное числу состояний системы; k- число узлов графа, соответствующих исправным состояниям системы; - вероятность того, что система я течение времени t попадет в i-е исправное состояние; - вероятность того, что система я течение времени t попадет в j- е отказовое состояние.

Если число исправных состояний системы больше, чем отказовых, то следует пользоваться соотношением (2.1), в противном случае целесообразно использовать (2.2).

Вероятность и при известных начальных условниях всегда можно определить из исходной системы дифференциальных уравнений. Наиболее просто найти искомые вероятности в преобразованиях Лапласа с последующим отысканием оригиналом функций и .

Среднее время безотказной работы может быть вычисленно при известной вероятности безотказной работы по формуле . Так как по определению , то при s=0 имеем

. (2.3)

Из этого выражения видно, что для определения среднего времени безотказнох работы достаточно найти преобразование Лапласа вероятности безотказной работы системы и в полученное выражение подставить s=0.

Для определения функции готовности строится граф состояний системы, на графе отмечаются все отказовые состояния и составляется формально по виду графа система дифференциальных уравнений. Для определения используется одно из следующих соотношений:

(2.4)

(2.5)

где - вероятность застать систему в момент времени t в i-м испраном состоянии; - вероятность застать систему в момент времени t в j-м неисправном состоянии; k-число узлов графа, соответствующих исправным состояниям системы; N+1 –общее число узлов в графе, равное числу состояний системы.

Реферат опубликован: 28/11/2008