Графическое представление данных в статистике

Страница: 9/12

Изображение динамики валового сбора зерновых культур на координатной сетке с неразрывной шкалой значений, начинающих­ся от нуля, вряд ли целесообразно, так как 2/3 поля диаграммы остаются неиспользованными и ничего не дают для выразитель­ности изображения. Поэтому в данных условиях рекомендуется строить шкалу без вертикального нуля, т. е. шкала значений раз­рывается недалеко от нулевой линии и на диаграмму попадает лишь часть всего возможного поля графика. Это не приводит к искажениям в изображении динамики явления, и процесс его из­менения рисуется диаграммой более четко (рис. 5.18).

Рис. 5.18. Динамика валового сбора зерновых культур в регионе за 1985-1994 гг.

Нередко на одном линейном графике приводится несколько кри­вых, которые дают сравнительную характеристику динамики раз­личных показателей или одного и того же показателя.

Примером графического изображения сразу нескольких показа­телей является рис. 5.19.

141

Рис. 5.19. Динамика производства чугуна и готового проката в регионе за 1985-1994 гг.

Однако на одном графике не следует помещать более трех-че­тырех кривых, так как большое их количество неизбежно ослож­няет чертеж и линейная диаграмма теряет наглядность.

В некоторых случаях нанесения на один график двух кривых дает возможность одновременно изобразить динамику третьего по­казателя, если он является разностью первых двух. Например, при изображении динамики рождаемости и смертности площадь меж­ду двумя кривыми показывает величину естественного прироста или естественной убыли населения.

Иногда необходимо сравнить на графике динамику двух пока­зателей, имеющих различные единицы измерения. В таких случа­ях понадобится не одна, а две масштабные шкалы. Одну из них размещают справа, другую - слева.

Однако такое сравнение кривых не дает достаточно полной кар­тины динамики этих показателей, так как масштабы произвольны. Поэтому сравнение динамики уровня двух разнородных показате­лей следует осуществлять на основе использования одного мас­штаба после преобразования абсолютных величин в относитель­ные. Примером такой линейной диаграммы является рис. 5.20.

Линейные диаграммы с равномерной шкалой имеют один не­достаток, снижающий их познавательную ценность: равномерная шкала позволяет измерять и сравнивать только отраженные на диаграмме абсолютные приросты или уменьшения показателей на протяжении исследуемого периода. Однако при изучении динами­ки важно знать относительные изменения исследуемых показате­лей по сравнению с достигнутым уровнем или темпы их измене-

Рис. 5.20. Доли вкладов граждан в Сбербанк и коммерческие банки в одном из городов в 1995 г. (%)

ния. Именно относительные изменения экономических показате­лей в динамике искажаются при их изображении на координатной диаграмме с равномерной вертикальной шкалой. Кроме того, в обычных координатах теряет всякую наглядность и даже становит­ся невозможным изображение для рядов динамики с резко изме­няющимися уровнями, которые обычно имеют место в динамичес­ких рядах за длительный период времени.

В этих случаях следует отказаться от равномерной шкалы и по­ложить в основу графика полулогарифмическую систему. Основ­ная идея полулогарифмической системы состоит в том, что в ней равным линейным отрезкам соответствуют равные значения ло­гарифмов чисел. Такой подход имеет преимущество: возможность уменьшения размеров больших чисел через их логарифмические эквиваленты. Однако с масштабной шкалой в виде логарифмов график малодоступен для понимания. Необходимо рядом с лога­рифмами, обозначенными на масштабной шкале, проставить сами числа, характеризующие уровни изображаемого ряда динамики, которые соответствуют указанным числам логарифмов. Такого рода графики носят название графиков на полулогарифмической сетке.

Полулогарифмической сеткой называется сетка, в которой на одной оси нанесен линейный масштаб, а на другой - логарифми­ческий. В данном случае логарифмический масштаб наносится на ось ординат, а на оси абсцисс располагают равномерную шкалу для отсчета времени по принятым интервалам (годам, кварталам, месяцам, дням и пр.).

Техника построения логарифмической шкалы следующая (рис. 5.21).

Реферат опубликован: 17/06/2007