Страница: 7/12
Относительная мощность шума квантования равна -37,842 дБ. Добавление каждого двоичного символа кодовой комбинации улучшает отношение РВ/Рe на 6 дБ.
С другой стороны увеличение разрядности требует повышения быстродействия многоразрядных кодирующих устройств и соответствующего расширения полосы частот канала передачи.
Важной особенностью шума квантования является то, что он возникает одновременно с появлением сообщения. Это нелинейное искажение, возникающее в процессе квантования. Этот шум не накапливается. Основное преимущество ИКМ перед системами непрерывного типа состоит в их высокой помехоустойчивости. Это преимущество наиболее сильно проявляется в системах ретрансляции.
Высокая помехоустойчивость ИКМ позволяет осуществить практически неограниченную по дальности связь при использовании каналов сравнительно невысокого качества. Другим существенным преимуществом ИКМ является широкое использование в аппаратуре преобразования сигналов современной элементной базы ЭВМ и микроэлектроники.
На цифровой основе могут быть объединены в единой системе сигналы передачи данных с сигналами передачи речи и телевидения. Это позволяет осуществить интеграцию систем передачи и систем коммутации.
Простота сочленения цифрового канала с ЭВМ позволяет существенно расширить область использования ЭВМ при построении аппаратуры связи и автоматизации управления сетями связи.
Пикфактор гармонического сигнала П=, для телефонного сообщения П»3, симфонической музыки П=10.
Определим по выведенной формуле отношение мощности сигнала к мощности шума квантования для телефонного сообщения при заданном числе уровней квантования N=128
2.6 Статистическое (эффективное) кодирование.
Статистическое кодирование – прямая противоположность помехоустойчивому кодированию.
При помехоустойчивом кодировании увеличивается избыточность за счет введения дополнительных элементов в кодовой комбинации (например, проверка на четность) благодаря чему повышается избыточность кода.
При статистическом кодировании наоборот, уменьшается избыточность, - наиболее часто встречающиеся сообщения (с большей вероятностью) представляются в виде коротких комбинаций, реже встречающимся сообщениям присваиваются более длинные комбинации, благодаря чему уменьшается избыточность кода.
Производительность источника сообщений определяется количеством передаваемой информации за единицу времени.
Количество информации i(a) - это логарифмическая функция вероятности logP(a), где а - конкретное сообщение из ансамбля А (а Î А)
i(a)= -logP(a)=log(1/P(a)). Основание логарифма берут равным 2. Количество информации, содержащейся в сообщении с вероятностью Р(а)=0.5; i(a)= log 2 (1/0.5) = 1 называется двоичная единица, или бит. Энтропия источника сообщений H(A) - это математическое ожидание (среднее арифметическое) количества информации H(A)=, или усреднение по всему ансамблю сообщений. Рассчитаем энтропию заданного источника Рассчитаем значение энтропии для случая, когда количество сообщений К = 2, а вероятности этих сообщений распределены следующим образом: р(1)=0.1, р(0)=0.9, тогда
Максимальное значение энтропии (Н(А) = 1) для двух сообщений можно получить только в том случае, когда их вероятности равны друг другу, т.е. р(1)= р(0)=0.5. А сравнивая нашу полученную энтропию с максимальной видим, что максимальная больше в два раза. Это достаточно плохо, потому что энтропия связана с производительностью источника Н'(А), которая определяет среднее количество информации, выдаваемое источником в единицу времени:
Реферат опубликован: 16/12/2006