Страница: 11/21
Итак, мы сделали некоторые наблюдения над простейшими проявлениями геометрической мысли в эстетическом ее аспекте. Следующим шагом, естественно, должна стать попытка, распространить наши рассуждения и на другие области математики, проверить, не обнаружим ли мы и там то, что привлекло наше внимание в простейших геометрических примерах. Необходимо выяснить, в какой мере то, что было сказано нами о геометрии, можно повторить и о математике вообще; что можно повторить дословно, а что лишь mutatis mutandis.
Кант этот шаг делает: конструктивный характер математическое мышление сохраняет и за пределами геометрии, однако собственно геометрическое, или остенсивное, конструирование заменяется в арифметике и алгебре на символическое [11, т.3, с.530-531, 542].
Нечто принципиально новое, по сравнению с рассмотренным выше собственно геометрическим конструированием, мы обнаруживаем уже на примере позиционной записи натуральных чисел. Введя строго фиксированный конечный набор графических символов и определенные правила их комбинирования, мы получаем возможность, наглядно представлять достаточно большие натуральные числа и производимые над ними действия. В эстетическом аспекте вся арифметика натуральных чисел предстает как система организуемых на плоскости графических символов. Организация символов производится посредством нескольких типов манипулирования этими символами: расстановки и перестановки знаков, замены одних знаков другими. Вспомним хотя бы умножение «столбиком» или деление «уголком». Указанные манипуляции могут быть охарактеризованы как квазигеометрические, поскольку, представляя из себя операции с графическими знаками как целостными образованиями, собственно геометрическими они не являются (геометрическая конфигурация самого знака здесь совершенно неважна, важно лишь удобство его с точки зрения простоты написания, перестановок и замен, а также достаточное отличие от других знаков в рамках той же системы [7, с.58, 61-62]).
Работа с более богатой и разнообразной алгебраической графикой также может быть охарактеризована как манипулирование графическими символами. Рассмотрим, в качестве примера, одну из простейших алгебраических конструкций - группу. Группа - это совокупность элементов (в качестве графических символов можно использовать буквы латинского алфавита), правила манипулирования с которыми, задаются следующими условиями, называемыми аксиомами группы: (G1) из двух элементов x и y можно составить новый графический символ x•y; (G2) графические символы (x•y)•z и x•(y•z) являются взаимозаменяемыми; (G3) среди элементов группы имеется элемент, называемый нейтральным, который обозначим e, такой, что содержащие его графические символы x•e, e•x и x являются взаимозаменяемыми; (G4) вместе с элементом x имеется элемент, называемый обратным для x, обозначим его x', такой, что символы x•x', x'•x и e являются взаимозаменяемыми. Во всех аксиомах x, y и z - произвольные элементы группы. Доказательства каких-либо утверждений относительно групп представляют собой разворачивание определенных квазигеометрических конструкций. Это демонстрация определенных особенностей манипуляции с графическими символами при соблюдении указанных правил. Рассмотрим, например, как производится доказательство того, что нейтральный элемент единственный. Демонстрируется, что любые два графических символа, изображающие нейтральный элемент, взаимозаменяемы. В самом деле, пусть это символы e и f. Тогда, согласно правилу (G3), f взаимозаменяем с e•f, а этот последний символ - с e, следовательно, e и f взаимозаменяемы. Перед нами манипуляционное обоснование, в основе которого всегда лежат простейшие манипуляции, типа «подставить вместо», являющиеся неформальными, геометрически очевидными действиями. Понимание того, что они обозначают, всегда негласно предполагается. Н.Малкольм сохранил следующую мысль Витгенштейна: «Доказательство в математике заключается в том, что уравнение записывают на бумаге и смотрят, как одно выражение вытекает из другого. Но если всегда подвергать сомнению выражения, которые появляются на бумаге, то не может существовать ни доказательств, ни самой математики» [17, с.90]. Вспоминаются также слова Г.Вейля: «Способ, каким математик обращается со своими формулами, построенными из знаков, немногим отличается от того, как столяр в своей мастерской обращается с деревом и рубанком, пилой и клеем» [7, с.58].
Реферат опубликован: 26/01/2009