Математическая мифология и пангеометризм

Страница: 2/21

Итак, хотя универсальной математики не существует, это не означает бессмысленности разговора о математике вообще. (Ниже мы будем говорить не только об определенном стиле математического мышления, но и о понимании математики вообще, этим стилем провоцируемом). Достаточно удобным для разъяснения того, что мы хотим сказать, оказывается противопоставление понятия-емкости и понятия-типа, производимое Р.Арнхеймом [2, с.34-39]. «Понятие-емкость - это сумма свойств, по которым можно узнать данный вид сущности. Тип - это структурная основа такого вида сущности» [2, с.35]. Мы не будем пытаться в дальнейшем привести необходимый и (в совокупности) достаточный перечень черт, определяющих математическое мышление. Да такой перечень и невозможно составить (здесь уместно вспомнить знаменитые рассуждения Витгенштейна о понятии «игра»). Однако это не делает менее интересной попытку угадать некий образ, некую структуру-гештальт, которая давала бы нам ощущение прозрения в тайну математического.

При этом достаточно понятно, что характер подобного «прозрения» будет зависеть от избранного угла зрения на математику (в нашем случае, взглядом на нее с точки зрения ее связи преимущественно с такими областями культуры как религия, философия, искусство, т.е. взглядом sub specie artis). Выбор иного угла зрения привел бы к иной картине, но избрание одного угла зрения и не предполагает отрицания правомерности других, а значит, мы и не имеем в указании на наличие других возможных подходов решающего аргумента против права создаваемой в данной работе картины на существование. Более того: мы не просто избираем здесь определенный ракурс, но стремимся сохранять его, пока остается возможность развивать мысль в избранном направлении. Это сознательный метод данной работы. Ее схема приблизительно такова (рис.2).

Рис.2.

Начать естественно с выражения «математическая мифология». Для разъяснения того, что имеется в виду, нам придется обратиться к Платону.

1. Что такое математическая мифология?

Платоновский Тимей говорит: « . не удивляйся, Сократ, что мы, рассматривая во многих отношениях много вещей, таких, как боги и рождение Вселенной, не достигнем в наших рассуждениях полной точности и непротиворечивости. Напротив, мы должны радоваться, если наше рассуждение окажется не менее правдоподобным, чем любое другое, и притом помнить, что и я, рассуждающий, и вы, мои судьи, всего лишь люди, а потому нам приходиться довольствоваться в таких вопросах правдоподобным мифом, не требуя большего» [21, с.433; курсив мой].

Мифология «Тимея» насыщена математическими элементами. Это не просто миф, но миф математический. Здесь и рассуждение о шарообразности космоса, и разделение мировой души в соответствии с определенными арифметическими закономерностями, и все учение о четырех стихиях, включающее знаменитые рассуждения о правильных многогранниках. Согласно Проклу, «Платон многие удивительные учения о богах излагает нам посредством математических форм», и таков же «весь способ Пифагора учить о богах» [24, с.81].

В чем же смысл математического мифа? В чем притягательность именно математической мифологии для античного мыслителя? Ответ на эти вопросы мы находим у того же Платона, и в первую очередь в диалоге «Государство».

Во-первых, здесь мы весьма отчетливо видим, каким образом миф работает в динамике платоновской мысли. В конце VI книги строятся взаимосвязанные иерархии бытия и познавательных способностей, а параллельно им развивается соответствующая мифологическая конструкция, которая находит окончательное завершение уже в VII книге в знаменитом мифе о пещере. По существу Платон параллельно возводит две тесно связанные между собою конструкции - метафизическую и мифологическую. Их взаимосвязь организуется посредством широко применяемого Платоном принципа пропорции или аналогии (см. подробнее у А.Ф.Лосева [16, с.250-275]).

Реферат опубликован: 26/01/2009