Страница: 20/21
(3) Графический метод
Может использоваться как самостоятельно, так и совместно с другими методами.
Если конкретные данные перенести на график, то полученное изображение называется полем корреляции. На оси абсцисс откладывается значение факторного признака, а на оси ординат – результативного. Каждая единица, обладающая определенным значением факторного и результативного признака, обозначается точкой.
Беспорядочное расположение говорит об отсутствии связи. Наоборот, чем сильнее связь, тем теснее точки группируются вокруг определенной линии.
(4) Метод аналитической группировки
Сначала выбираются два признака: факторный и результативный. Пол факторному признаку производится группировка, а по результативному – подсчет средних или относительных величин.
Путем сопоставления характера изменений значений факторного и результативного признака можно сделать вывод о наличии связи и ее направлении. При помощи метода аналитической группировки можно сделать вывод и о тесноте связи.
Пример: среднегодовая з/п работников-текстильщиков в 1849 г.
Группы предприятий по числу работников |
З/п в рублях |
более 1000 |
219 |
501– 1000 |
204 |
101 – 500 |
198 |
51 – 100 |
188 |
24 – 50 |
192 |
менее 20 |
164 |
Аналитические методы
Это основные методы изучения связи. Они делятся на непараметрические и параметрические.
Непараметрические
Их еще называют ранговыми методами. Они связаны с расчетами различных коэффициентов. Применяются как отдельно, так и совместно с параметрическими. Особенно эффективны непараметрические методы, когда необходимо измерить связь между качественными признаками. Они проще в вычислении и не требуют никаких предположений о законе распределения исходных статистических данных, т.к. при их расчете оперируют не самими значениями признаков, а их рангами, частотами, знаками и т.д.
Коэффициент Фехнера (коэффициент совпадения знаков)
x |
y | ||
x1 x2 x3 . . . xn |
y1 y2 y3 . . . yn | ||
х = хi - х |
y = yi - y | ||
– + + – + + – |
+ + – – + – + | ||
Расчет основан на применении первых степеней отклонений значений признака от среднего уровня ряда двух связанных признаков.
i = |
кол-во совпадений – кол-во несовпадений |
общее количество отклонений |
i = |
3 – 4 |
= – |
1 |
7 |
7 |
Коэффициент совпадения знаков может принимать значения от –1 до +1. Чем ближе значение коэффициента к |1|, тем связь более тесная. Знак коэффициента говорит о направлении, величина – о силе связи.
Реферат опубликован: 9/11/2008