Статистика

Страница: 12/18

Мода значение признака, которое чаще других встречается в данном ряду распределения.

Мода для дискретного ряда определяется как варианта, имеющая наибольшую частоту.

Где Хо –нижняя граница модального интервала.

d- величина интервала

f1- частота (вес) интервала, предшествующего модальному

f2—частота (вес) модального интервала.

F3—частота (вес) интервала, следующего за модальным.

Квартиль.

Q1-номер квартиля

номер первого квартильного значения признака

FQ1—частота квартильного интервала

FQ1-1 –сумма накопленных частот в интервале, предшествующего квартильному.

Q2=М

-- номер третьего квартильного признака

Квартиль- структурное значение, которое отражает значение среднего признака в К-Л части.

Расчёт средних всегда производится одновременно с количественным анализом, изучаемых совокупностей, средние величины рассчитываются не всегда, когда на лицо количественная вариация признаков.

Формула для расчёта первого дециля.

Средняя величина должна быть рассчитываема для количественно-однородной совокупности.

Это требование состоит в том, что среднее нельзя применить к таким совокупностям, отдельные части которых подчинены различным законам развития относительных величин (определяемого)(усредняемого) признака.

14. Понятие вариации и значение ее статистического издания. Показатель вариации

Сущность и принципы вариации.

Абсолютные показатели вариации

Относительные показатели вариации.

Дисперсия альтернативного признака

Некоторые математические свойства дисперсии.

Исчисление среднего квадратического отклонения способом моментов.

Средняя величина представляет собой обобщающую статистическую характеристику в которой получает количественное выражение типичный уровень признака. Однако одной средней величиной нельзя отобразить все черты статистического распределения. При совпадении средних характер распределения может быть различен.

В связи с этим встаёт вопрос о расчёте показательной вариации.

Они используются для характеристики упорядочивания статистической совокупности.(Т.е. совокупности, которые подвергнуты группировкам, классификации и т.д.)

Для измерения вариации используются такие показатели, как размах вариации среднее линейное отклонение, дисперсия, средние квадратическое отклонение, каждый из этих показателей имеет свои познавательные возможности.

Простейший показатель –размах вариации.

R=Xmax-Xmin/

Из приведённой формы видно, что величина этого показателя целиком зависит от случайности расположения крайних членов ряда.

Его недостаток в том, что варьирование значения признака из основной массы членов ряда не находит отражения в этом показателе. В то же время колеблимость –признака складывается из всех его значений.

Таким образом применение такого показателя может привести к неправильной оценке вариации.

Указанного недостатка лишены такие показатели, которые представляют собой средние полученные из отклонений индивидуальных значений признака от их среднего размера.

L –может быть простой(выше) и взвешаной.

Среднее квадратическое отклонение

Для расчёта дисперсии в дискретном рядах используется следующая формула.

Пример Распределение коров колхозной фермы по годовому удою молока и расчёт абсолютных показателей вариации.

Годовой удой молока от коровы тыс.кг. (Х)

Число коров

f

Средняя величина признака

Средина интервала

Х*f

Х-Х

|X-X|*f

(X-X)2

(X-X)2*f

До-2

4

1,5

6

-1,3

5,2

1,69

6,76

2-3

2

2,5

5

-ё,3

0,6

0,09

0,18

3-4

2

3,5

7

+0,7

1,4

0,49

0,98

4-5

1

4,5

4,5

+1,7

1,7

2,89

2,89

5 и более

1

5,5

5,6

+2,1

2,7

7,29

7,29

Итого

10

28

11,6

18,10

Реферат опубликован: 12/03/2010