Страница: 26/38
Основной целью экономики является обеспечение общества предметами потребления. Экономика состоит из элементов – хозяйственных единиц: предприятия, фирмы, банки и так далее. Экономика является подсистемой системы более высокого уровня – природы и общества.
Задачами экономико-математического моделирования являются:
- анализ экономических объектов и процессов;
- экономическое прогнозирование, предвидение развития экономических процессов;
- выработка данных необходимых для принятия управленческих решений.
Любое экономическое исследование всегда предполагает объединение теории (экономической модели) и практики (статистических данных). Теоретические модели используются для описания и объяснения наблюдаемых процессов, а статистические данные собираются с целью эмпирического построения и обоснования модели.
Математические модели, используемые в экономике, подразделяются на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария: модели макро- и микроэкономические, теоретические и прикладные, оптимизационные и равновесные, статистические и динамические.
Макроэкономические модели описывают экономику как единое целое, связывая между собой укрупненные материальные и финансовые показатели: ВНП, потребление, инвестиции, занятость и т.д. Микроэкономические модели описывают взаимодействие структурных и функциональных составляющих экономики, либо поведение отдельной такой составляющей в рыночной среде. Теоретические модели позволяют изучать общие свойства экономики и ее характерных элементов дедукцией выводов из формальных предпосылок. Прикладные модели дают возможность оценить параметры функционирования конкретного экономического объекта и сформулировать рекомендации для принятия практических решений. Равновесные модели описывают такие состояния экономики, когда результирующая всех сил, стремящихся вывести ее из данного состояния, равна нулю. В моделях статистических описывается состояние экономического объекта в конкретный момент или период времени; динамические модели включают взаимосвязи переменных во времени.
В экономической деятельности достаточно часто требуется не только получить прогнозные оценки исследуемого показателя, но и количественно охарактеризовать степень влияния на него других факторов, а также возможные последствия их изменений в будущем. Для решения этой задачи предназначен аппарат корреляционного и регрессионного анализа.
Результат опыта можно охарактеризовать качественно и количественно. Любая качественная характеристика результата опыта называется событием; любая количественная характеристика результата опыта называется случайной величиной. Случайная величина – это такая величина, которая в результате опыта может принимать различные значения, причем до опыта не возможно предсказать, какое именно значение она примет.
Понятие зависимости (независимости) случайных величин является одним из важнейших понятий в теории вероятностей. Так как наличие или отсутствие зависимости между случайными величинами оказывает существенное влияние на метод исследования. Степень тесноты изменяется в широких пределах: от полной независимости случайных величин до очень сильной, близкой по существу к функциональной зависимости.
Связь между зависимой переменной Y(i) и n независимыми факторами можно охарактеризовать функцией регрессии Y(i) = f (X1, X2, , Xm), которая показывает, каким будет в среднем значение переменной Y, если переменные Х примут конкретное значение. Это обстоятельство позволяет применять модель регрессии не только для анализа, но и для прогнозирования.
Множественная корреляция и регрессия определяют форму связи переменных, выявляют тесноту их связи и устанавливают влияние отдельных факторов.
Основными этапами построения регрессионной модели являются:
- построение системы показателей (факторов). Сбор и предварительный анализ исходных данных.
- выбор вида модели и численная оценка ее параметров.
- проверка качества модели
- оценка влияния отдельных факторов на основе модели
- прогнозирование на основе модели регрессии.
Рассмотрим содержание этих этапов и их реализацию.
Построение системы показателей (факторов).
Информационной базой регрессионного анализа являются многомерные временные ряды, каждый из которых отражает динамику одной переменной и должен удовлетворять требованиям статистического аппарата исследования.
Для построения системы показателей используется корреляционный анализ. Основная задача которого, состоит в выявлении связи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции и детерминации.
Выбор факторов, влияющих на исследуемый показатель, производится прежде всего исходя из содержательного экономического анализа. Для получения надежных оценок в модель не следует включать слишком много факторов. Их число не должно превышать одной трети объема имеющихся данных. Для определения наиболее существенных факторов могут быть использованы коэффициенты линейной и множественной корреляции.
Реферат опубликован: 8/03/2006