Страница: 30/38
i =1
где tтабл - табличное значение t – статистики с уровнем значимости l и степенью свободы (n - 2);
S – стандартная ошибка зависимой переменной.
Границы доверительного интервала вычисляются, соответственно, как:
нижняя граница - UH(k) = ŷ n + k – m y k ;
верхняя граница – UB(k) = ŷ n + k + m ŷ k.
Средняя ошибка прогноза для индивидуального значения зависимой переменой Y от линии регрессии вычисляется по формуле:
n _
m ŷ (xk) = Stтабл 1 +1 / n + (xn+k – x ) 2 / å (xi - x ) 2 (32 )
i =1
Критерием прогнозных качеств оцененной регрессионной модели может служить относительная ошибка прогноза:
V = S / y , ( 33 )
где S - стандартная ошибка зависимой переменной;
y - среднее значение фактических данных зависимой переменной.
Если величина V мала и отсутствует автокорреляция остатков (то есть систематичность отклонений зависимой переменной от линии регрессии), то прогнозные качества модели высоки. Автокорреляция остатков проверяется с помощью критерия Дарбина – Уотсона, рассчитываемая по формуле:
n n
d p = å (ei - e i-1)2 / å ei2 , ( 34 )
i =1 i =1
и сравнивается с табличными значениями d1 и d2, определенными по таблице с уровнем значимости l и числом степеней свободы k = n: при dр > d2, то корреляция отсутствует.
Если построенная регрессионная модель адекватна и прогнозные оценки факторов достаточно надежны, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадет в интервал, образованный нижней и верхней границами.
3.2 Экономико – математическое моделирование прибыли ГУСП «Башхлебоптицепрома»
В корреляционной матрице дается критическое значение коэффициента корреляции на уровне 90 % при двух степенях свободы:
уровень 90 % - это надежность получаемых результатов, она задается исследователем;
две степени свободы – это количество исследуемых одновременно параметров.
Все коэффициенты корреляции, табличные значения которых, меньше критического значения коэффициента корреляции (+ 0,2920), принимается равным нулю, то есть корреляционная связь между переменными является не значимой. Качественная оценка коэффициентов корреляции осуществляется на основе шкалы Чеддока.
Проанализируем силу связи зависимой переменной Y с независимыми переменными Хi.
Целью данного исследования является построение «лучшей» модели для определения влияния составляющих затрат на изменение выручки от реализации товара на изменение прибыли, а также для прогноза прибыли на последующие 3 этапа, а именно на 3 месяца.
Для проведения исследования необходимы исходные данные. В данной задаче анализу подвергаются 7 составляющих затрат, с целью выявления их влияния на выручку от реализации товара.
Для проведения исследования по выявлению влияния составляющих затрат на выручку использовались данные бухгалтерского учета (журнал-ордер № , главная книга) ГУСП, представленные в таблице «Статистика данных по ГУСП «Башхлебоптицепрому» ( см. приложение № 5 ). В качестве исходных данных необходимых для проведения исследования выбираем статьи издержек обращения по 44 счету, наиболее значимые для расчета данного показателя с экономической точки зрения (см. приложение 5) .
Таблица с исходными данными состоит из столбцов и строк. По столбцам отражается временной интервал. В качестве периода исследования берем период по месяцам с июля 1998 года по март 2000 года. Этот временной интервал позволяет прогнозировать с достаточным количеством точек необходимым для получения адекватной модели с достаточной степенью точности. По строкам отражаются исследуемые переменные:Y – зависимая переменная, в нашем примере это показатель выпучки; Х – независимые переменные, а именно это:
Х1 – заработная плата;
Х2 – аммортизация основных средств;
Х3 – горюче-смазочные материалы;
Х4 – услуги охраны
Х5 – электро-энергия
Х6 – ремонтные работы
Х7 – запчасти
Все числовые данные представлены в тысячах рублей.
Прежде, чем построить модель, необходимо произвести предварительную обработку данных, которая включает в себя получение корреляционной матрицы (см. приложение 6).
Корреляционная матица есть квадратная матрица парных коэффициентов корреляции. Нумерация переменных соответствует приложению 5. Например, показатель 1 – это Y, показатель 2 - это Х1 и так далее.
Для проведения исследования взяты составляющие издержек обращения, а именно: заработная плата, амортизация основных средств, ГСМ, охрана, электро-энергия, ремонтные работы, запчасти для автомашин за отчетный период.
Реферат опубликован: 8/03/2006