Спектральный анализ и его приложения к обработке сигналов в реальном времени

Страница: 10/16

что приводит к следующей оценке :

1.4.4. Оценивание линейного предсказания по методу наименьших квадратов.

Налагая ограничения на авторегрессионные параметры, с тем чтобы они удовлетворяли рекурсивному выражению метода Левинсона, в методе Берга происходит минимизация по одного параметра - коэффициента отражения . Более общий подход состоит в минимизации одновременно по всем коэффициентам линейного предсказания.

Итак, пусть для оценивания авторегрессионных параметров порядка p используются последовательность данных .Оценка линейного предсказания вперед порядка p для отсчета будет иметь форму:

где - коэффициенты линейного предсказания вперед порядка p.

Ошибка линейного предсказания :

В матричном виде это выражение записывается как :

и соотношение для ошибки :

Однако если рассматривать, в котором минимизируется следующая, невзвешенная выборочная дисперсия :

то матрица принимает теплицевый вид (далее ее будем обозначать ).

Нормальные уравнения, минимизирующие средний квадрат ошибки имеют следующий вид:

Элементы эрмитовой матрицы имеют вид корреляционных форм

, где

Таким образом, авторегрессионные параметры могут быть получены в результате решения нормальных уравнений. Рассмотрим алгоритм, который в решении нормальных уравнений учитывает тот факт, что эрмитова матрица получена как произведение двух теплицевых и в результате этого сводит количество вычислений к . При использовании алгоритма Холецкого потребовалось бы операций.

Ошибки линейного предсказания вперед и назад p-ого порядка

Здесь вектор данных , вектор коэффициентов линейного предсказания вперед и вектор линейного предсказания назад определяется следующими выражениями:

, ,

На основе отсчетов измеренных комплексных данных ковариационный метод линейного предсказания позволяет раздельно минимизировать суммы квадратов ошибок линейного предсказания вперед и назад:

,

что приводит к следующим нормальным уравнениям :

,

Введем необходимые для дальнейшего определения :

,

исходя из вида и можно записать :

, ,

где вектор столбцы и даются выражениями :

Реферат опубликован: 18/12/2006