Спектральный анализ и его приложения к обработке сигналов в реальном времени

Страница: 9/16

, m<0

В частном случае для авторегрессионных параметров, получаем :

,

, m=0

, m<0

В матричном виде эти соотношения выглядят следующим образом :

Таким образом, если задана автокорреляционная последовательность для , то АР-параметры можно найти в результате решения последнего матричного соотношения (называемого нормальными уравнениями Юла-Уалкера), где автокорреляционная матрица является и теплицевой, и эрмитовой.

Наиболее очевидным подходом к авторегрессионному оцениванию является решение нормальных уравнений Юла-Уалкера, в которые вместо значений неизвестной автокорреляционной функции подставляем их оценки. Результаты экспериментов с этим, первым методом АР-оценивания и сравнение с другими методами этого класса приведены в соответствующем разделе.

1.4.3. Методы оценивания коэффициентов отражения.

Рекурсивное решение уравнений Юла-Уалкера методом Левинсона связывает АР-параметры порядка p c параметрами порядка p-1 выражением :

, где n=1,2, p-1

Коэффициент отражения определяется по известным значениям автокорреляционной функции :

, где

Из всех величин только непосредственно зависит от автокорреляционной функции. В разное время предлагалось несколько различных процедур оценки коэффициента отражения, рассмотрим некоторые из них.

1.4.3.1. Геометрический алгоритм.

Ошибки линейного предсказания вперед и назад определяются соответственно следующими выражениями:

Рекурсивные выражения, связывающие ошибки линейного предсказания моделей порядков p и p-1, определяются простой подстановкой и в рекурсивное соотношение для авторегрессионных параметров:

Несложно показать, что коэффициент отражения обладает следующим свойством (является коэффициентом частной корреляции между ошибками линейного предсказания вперед и назад) :

Используя оценки взаимной корреляции и автокорреляции ошибок предсказания вперед и назад, получим :

Таким образом, геометрический алгоритм использует алгоритм Левинсона, в котором вместо обычного коэффициента отражения, вычисляемого по известной автокорреляционной функции, используется его оценка

Окончательный вид выражений геометрического алгоритма :

, где n=1,2, p-1

,

, где

1.4.3.2. Гармонический алгоритм Берга.

Алгоритм Берга идентичен геометрическому, однако оценка коэффициента отражения находится из других соображений, а именно : при каждом значений параметра p в нем минимизируется арифметическое среднее мощности ошибок линейного предсказания вперед и назад (то есть выборочная дисперсия ошибки предсказания):

Приравнивая производные к нулю, имеем оценку для :

Некоторым обобщением является взвешивание среднего квадрата ошибки предсказания для уменьшения частотного смещения, наблюдаемого при использовании базового метода Берга:

Реферат опубликован: 18/12/2006