Спектральный анализ и его приложения к обработке сигналов в реальном времени

Страница: 8/16

, где

Коррелограммный метод заключается в подстановке в определение спектральной плотности мощности оценку автокорреляционной последовательности (коррелограммы). Таким образом, имея две оценки автокорреляционной последовательности получаем две оценки спектральной плотности мощности:

, , где

, где - ядро Дирихле

Эффект неявно присутствующего окна из-за конечности данных приводит к свертке истинной спектральной плотности с преобразованием Фурье дискретно-временного прямоугольного или треугольного (как в случае со смещенными оценками) окна. Для уменьшения этого эффекта используется корреляционное окно и коррелограммная оценка спектральной плотности мощности в общем виде выглядит следующим образом:

Экспериментальные результаты приведены в соответствующем разделе.

1.3.5. Область применения.

Классические методы спектрального анализа применимы почти ко всем классам сигналов и шумов в предположении о стационарности. Вычислительная эффективность периодограммных и коррелограммных методов основана на использовании алгоритма Быстрого Преобразования Фурье. Недостатком всех методов спектрального анализа является искажения в спектральных составляющих по боковым лепесткам из-за взвешивания данных при помощи окна. Сравнение экспериментальных результатов с другими методами и характеристики взвешивающих окон приведены в соответствующем разделе.

1.4. Авторегрессионное спектральное оценивание.

1.4.1. Введение

Одна из причин применения параметрических моделей случайных и процессов и построения на их основе методов получения оценок спектральной плотности мощности обусловлена увеличением точности оценок по сравнению с классическими методами. Еще одна важная причина - более высокое спектральное разрешение. Далее рассматриваются следующие методы: метод Юла-Уалкера оценивания авторегрессионных параметров по последовательности оценок автокорреляционной функции, метод Берга оценивания авторегрессионных параметров по последовательности оценок коэффициентов отражения, метод раздельной минимизации квадратичных ошибок линейного предсказания вперед и назад - ковариационный метод, метод совместной минимизации квадратичных ошибок прямого и обратного линейного предсказания - модифицированный ковариационный.

Модель временного ряда (называемая модели авторегрессии-скользящего среднего в случае входной последовательности - белого шума), которая пригодна для аппроксимации многих встречающихся на практике детерминированных и стохастических процессов с дискретным временем, описывается следующим разностным уравнением:

Системная функция , связывающая вход и выход этого фильтра имеет рациональную форму:

Если в качестве входной последовательности использовать белый шум, то приходим к АРСС-модели. Спектральную плотность для АРСС-модели получаем, подставляя , что дает

, где

, , а - дисперсия

возбуждающего белого шума

В частных случаях для авторегрессионной модели и модели скользящего среднего получаем соответственно :

1.4.2. Оценивание корреляционной функции - метод Юла-Уалкера.

Из соотношения, связывающего параметры АРСС-модели с порядком авторегрессии p и скользящего среднего q:

Поскольку полагается, что u[k] - белый шум, то

,

, m>q

Реферат опубликован: 18/12/2006