Выборочные наблюдения екция

Страница: 2/16

При типическом отборе генеральная совокупность разбивается на типические группы единиц по какому–либо признаку, а затем из каждой из них производится механический или собственно-случайный отбор. Отбор единиц из типов производится тремя методами: пропорционально численности единиц типических групп, непропорционально численности единиц типических групп и пропорционально колеблемости в группах.

1.3. Ошибки выборочного отбора

Расхождение между значениями изучаемого признака выборочной и генеральной совокупностей является ошибкой репрезентативности (представи–тельности). Она может быть случайной и систематической. Случайная возникает в силу того, что выборочное статистическое наблюдение является несплошным наблюдением, и выборка недостаточно точно воспроизводит (репрезентирует) генеральную совокупность. При определении величины репрезентативной ошибки предполагается, что ошибка регистрации равна нулю. Определение ошибки производится по формулам ошибки выборочной доли и ошибки выборочной средней.

1.3.1. Ошибка выборочной доли

Выборочная доля представляет собой отношение числа единиц, обладающих данным признаком или данным его значением ( m ), к общему числу единиц выборочной совокупности ( n )

(Эту статистическую характеристику не следует путать с долей выборки, являющейся отношением числа единиц выборочной совокупности к числу единиц генеральной совокупности).

Ошибка выборочной доли представляет собой расхождение (разность) между долей в выборочной совокупности ( w ) и долей в генеральной совокупности ( p ), возникающее вследствие несплошного характера наблюдения. Величина ошибки выборочной доли определяется как предел отклонения w от p , гарантируемый с заданной вероятностью:

где – гарантийный коэффициент, зависящий от вероятности , с которой гарантируется невыход разности w –p за пределы ; – средняя ошибка выборочной доли.

Значения гарантийного коэффициента и соответствующие им вероятности приведены в табл.1.1. Обычно вероятность принимается равной 0,9545 или 0,9973, а при этом равно соответственно 2 и 3.

Значения средней ошибки выборки определяются по формуле

где – дисперсия в генеральной совокупности.

Между дисперсиями в генеральной и выборочной совокупностях существует следующее соотношение:

где – дисперсия в выборке.

Таблица 1.1

Значения гарантийного коэффициента

1,00

1,10

1,20

1,30

1,40

1,50

1,60

0,6827

0,7287

0,7699

0,8064

0,8385

0,8664

0,8904

1,70

1,80

1,90

2,00

2,10

2,20

2,30

0,9109

0,9281

0,9426

0,9545

0,9643

0,9722

0,9786

2,40

2,50

2,60

2,70

2,80

2,90

3,00

0,9836

0,9876

0,9907

0,9931

0,9949

0,9963

0,9973

Реферат опубликован: 30/03/2006